Asib27's picture
try 1
065fee7 verified
raw
history blame
10.7 kB
#!/usr/bin/env python
"""
Summarizes results of benchmarking.
Usage
=====
Run this script with::
./summarize performance.csv
And that should output::
+------------------------+----------+----------------------+
| Metric over 1 run(s) | Mean | Standard Deviation |
+========================+==========+======================+
| Total Time (seconds) | 1.200 | 0.0 |
+------------------------+----------+----------------------+
| Maximum Memory | 42.3 MiB | 0 Bytes |
+------------------------+----------+----------------------+
| Maximum CPU (percent) | 88.1 | 0.0 |
+------------------------+----------+----------------------+
| Average Memory | 33.9 MiB | 0 Bytes |
+------------------------+----------+----------------------+
| Average CPU (percent) | 30.5 | 0.0 |
+------------------------+----------+----------------------+
The script can also be ran with multiple files:
./summarize performance.csv performance-2.csv
And will have a similar output:
+------------------------+----------+----------------------+
| Metric over 2 run(s) | Mean | Standard Deviation |
+========================+==========+======================+
| Total Time (seconds) | 1.155 | 0.0449999570847 |
+------------------------+----------+----------------------+
| Maximum Memory | 42.5 MiB | 110.0 KiB |
+------------------------+----------+----------------------+
| Maximum CPU (percent) | 94.5 | 6.45 |
+------------------------+----------+----------------------+
| Average Memory | 35.6 MiB | 1.7 MiB |
+------------------------+----------+----------------------+
| Average CPU (percent) | 27.5 | 3.03068181818 |
+------------------------+----------+----------------------+
You can also specify the ``--output-format json`` option to print the
summary as JSON instead of a pretty printed table::
{
"total_time": 72.76999998092651,
"std_dev_average_memory": 0.0,
"std_dev_total_time": 0.0,
"average_memory": 56884518.57534247,
"std_dev_average_cpu": 0.0,
"std_dev_max_memory": 0.0,
"average_cpu": 61.19315068493151,
"max_memory": 58331136.0
}
"""
import argparse
import csv
import json
from math import sqrt
from tabulate import tabulate
def human_readable_size(value):
"""Converts integer values in bytes to human readable values"""
hummanize_suffixes = ('KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB')
base = 1024
bytes_int = float(value)
if bytes_int == 1:
return '1 Byte'
elif bytes_int < base:
return '%d Bytes' % bytes_int
for i, suffix in enumerate(hummanize_suffixes):
unit = base ** (i + 2)
if round((bytes_int / unit) * base) < base:
return f'{(base * bytes_int / unit):.1f} {suffix}'
class Summarizer:
DATA_INDEX_IN_ROW = {'time': 0, 'memory': 1, 'cpu': 2}
def __init__(self):
self.total_files = 0
self._num_rows = 0
self._start_time = None
self._end_time = None
self._totals = {
'time': [],
'average_memory': [],
'average_cpu': [],
'max_memory': [],
'max_cpu': [],
}
self._averages = {
'memory': 0.0,
'cpu': 0.0,
}
self._maximums = {'memory': 0.0, 'cpu': 0.0}
@property
def total_time(self):
return self._average_across_all_files('time')
@property
def max_cpu(self):
return self._average_across_all_files('max_cpu')
@property
def max_memory(self):
return self._average_across_all_files('max_memory')
@property
def average_cpu(self):
return self._average_across_all_files('average_cpu')
@property
def average_memory(self):
return self._average_across_all_files('average_memory')
@property
def std_dev_total_time(self):
return self._standard_deviation_across_all_files('time')
@property
def std_dev_max_cpu(self):
return self._standard_deviation_across_all_files('max_cpu')
@property
def std_dev_max_memory(self):
return self._standard_deviation_across_all_files('max_memory')
@property
def std_dev_average_cpu(self):
return self._standard_deviation_across_all_files('average_cpu')
@property
def std_dev_average_memory(self):
return self._standard_deviation_across_all_files('average_memory')
def _average_across_all_files(self, name):
return sum(self._totals[name]) / len(self._totals[name])
def _standard_deviation_across_all_files(self, name):
mean = self._average_across_all_files(name)
differences = [total - mean for total in self._totals[name]]
sq_differences = [difference**2 for difference in differences]
return sqrt(sum(sq_differences) / len(self._totals[name]))
def summarize_as_table(self):
"""Formats the processed data as pretty printed table.
:return: str of formatted table
"""
h = human_readable_size
table = [
[
'Total Time (seconds)',
'%.3f' % self.total_time,
self.std_dev_total_time,
],
['Maximum Memory', h(self.max_memory), h(self.std_dev_max_memory)],
[
'Maximum CPU (percent)',
'%.1f' % self.max_cpu,
self.std_dev_max_cpu,
],
[
'Average Memory',
h(self.average_memory),
h(self.std_dev_average_memory),
],
[
'Average CPU (percent)',
'%.1f' % self.average_cpu,
self.std_dev_average_cpu,
],
]
return tabulate(
table,
headers=[
'Metric over %s run(s)' % (self.total_files),
'Mean',
'Standard Deviation',
],
tablefmt="grid",
)
def summarize_as_json(self):
"""Return JSON summary of processed data.
:return: str of formatted JSON
"""
return json.dumps(
{
'total_time': self.total_time,
'std_dev_total_time': self.std_dev_total_time,
'max_memory': self.max_memory,
'std_dev_max_memory': self.std_dev_max_memory,
'average_memory': self.average_memory,
'std_dev_average_memory': self.std_dev_average_memory,
'average_cpu': self.average_cpu,
'std_dev_average_cpu': self.std_dev_average_cpu,
},
indent=2,
)
def process(self, args):
"""Processes the data from the CSV file"""
for benchmark_file in args.benchmark_files:
self.process_individual_file(benchmark_file)
self.total_files += 1
def process_individual_file(self, benchmark_file):
with open(benchmark_file) as f:
reader = csv.reader(f)
# Process each row from the CSV file
row = None
for row in reader:
self._validate_row(row, benchmark_file)
self.process_data_row(row)
self._validate_row(row, benchmark_file)
self._end_time = self._get_time(row)
self._finalize_processed_data_for_file()
def _validate_row(self, row, filename):
if not row:
raise RuntimeError(
'Row: %s could not be processed. The CSV file (%s) may be '
'empty.' % (row, filename)
)
def process_data_row(self, row):
# If the row is the first row collect the start time.
if self._num_rows == 0:
self._start_time = self._get_time(row)
self._num_rows += 1
self.process_data_point(row, 'memory')
self.process_data_point(row, 'cpu')
def process_data_point(self, row, name):
# Determine where in the CSV row the requested data is located.
index = self.DATA_INDEX_IN_ROW[name]
# Get the data point.
data_point = float(row[index])
self._add_to_average(name, data_point)
self._account_for_maximum(name, data_point)
def _finalize_processed_data_for_file(self):
# Add numbers to the total, which keeps track of data over
# all files provided.
self._totals['time'].append(self._end_time - self._start_time)
self._totals['max_cpu'].append(self._maximums['cpu'])
self._totals['max_memory'].append(self._maximums['memory'])
self._totals['average_cpu'].append(
self._averages['cpu'] / self._num_rows
)
self._totals['average_memory'].append(
self._averages['memory'] / self._num_rows
)
# Reset some of the data needed to be tracked for each specific
# file.
self._num_rows = 0
self._maximums = self._maximums.fromkeys(self._maximums, 0.0)
self._averages = self._averages.fromkeys(self._averages, 0.0)
def _get_time(self, row):
return float(row[self.DATA_INDEX_IN_ROW['time']])
def _add_to_average(self, name, data_point):
self._averages[name] += data_point
def _account_for_maximum(self, name, data_point):
if data_point > self._maximums[name]:
self._maximums[name] = data_point
def main():
parser = argparse.ArgumentParser(usage=__doc__)
parser.add_argument(
'benchmark_files',
nargs='+',
help=(
'The CSV output file from the benchmark script. If you provide'
'more than one of these files, it will give you the average '
'across all of the files for each metric.'
),
)
parser.add_argument(
'-f',
'--output-format',
default='table',
choices=['table', 'json'],
help=(
'Specify what output format to use for displaying results. '
'By default, a pretty printed table is used, but you can also '
'specify "json" to display pretty printed JSON.'
),
)
args = parser.parse_args()
summarizer = Summarizer()
summarizer.process(args)
if args.output_format == 'table':
result = summarizer.summarize_as_table()
else:
result = summarizer.summarize_as_json()
print(result)
if __name__ == '__main__':
main()