handwriting / handwriting_dataset.py
AnaChikashua's picture
Update handwriting_dataset.py
e34b638
raw
history blame
2.04 kB
import datasets
from datasets.tasks import ImageClassification
# _NAMES = ['ა', 'ბ', 'გ', 'დ', 'ე', 'ვ', 'ზ', 'თ', 'ი', 'კ', 'ლ', 'მ', 'ნ', 'ო', 'პ', 'ჟ', 'რ', 'ს', 'ტ', 'უ', 'ფ', 'ქ', 'ღ', 'ყ', 'შ', 'ჩ', 'ც', 'ძ', 'წ', 'ჭ', 'ხ', 'ჯ', 'ჰ']
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {Georgian language alphabet dataset},
author={Ana Chikashua},
year={2023}
}
"""
_DESCRIPTION = """
Georgian language handwriting dataset!
"""
_URL = "https://huggingface.co/datasets/AnaChikashua/handwriting/resolve/main/handwriting_dataset.zip"
class HandwritingData(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
citation=_CITATION,
features=datasets.Features(
{
"label": datasets.features.ClassLabel(),
"image": datasets.Image()
}
),
supervised_keys=("image", "label"),
homepage="https://huggingface.co/datasets/AnaChikashua/alphabet",
task_templates=[ImageClassification(image_column="image", label_column="label")],
)
def _split_generators(self, dl_manager):
path = dl_manager.dowload(_URL)
image_iters = dl_manager.iter_archive(path)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"images": image_iters}
),
]
def _generate_examples(self, images):
"""This function returns the examples in the raw (text) form."""
# Iterate through images
for idx, filepath, image in enumerate(images):
# extract the text from the filename
logger.error(filepath)
text = [c for c in str(filepath) if not 0 <= ord(c) <= 127][0]
yield idx, {
"label": text,
"image": image
}