|
import struct |
|
|
|
import numpy as np |
|
|
|
import datasets |
|
from datasets.tasks import ImageClassification |
|
|
|
|
|
_CITATION = """\ |
|
@article{lecun2010mnist, |
|
title={MNIST handwritten digit database}, |
|
author={LeCun, Yann and Cortes, Corinna and Burges, CJ}, |
|
journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist}, |
|
volume={2}, |
|
year={2010} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The MNIST dataset consists of 70,000 28x28 black-and-white images in 10 classes (one for each digits), with 7,000 |
|
images per class. There are 60,000 training images and 10,000 test images. |
|
""" |
|
_URL = "https://huggingface.co/datasets/AnaChikashua/handwriting/resolve/main/handwriting_dataset.zip" |
|
_NAMES = ['ა', 'ბ', 'გ', 'დ', 'ე', 'ვ', 'ზ', 'თ', 'ი', 'კ', 'ლ', 'მ', 'ნ', 'ო', 'პ', 'ჟ', 'რ', 'ს', 'ტ', 'უ', 'ფ', 'ქ', 'ღ', 'ყ', 'შ', 'ჩ', 'ც', 'ძ', 'წ', 'ჭ', 'ხ', 'ჯ', 'ჰ'] |
|
|
|
|
|
class MNIST(datasets.GeneratorBasedBuilder): |
|
"""MNIST Data Set""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="data", |
|
version=datasets.Version("1.0.0"), |
|
description=_DESCRIPTION, |
|
) |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": datasets.features.ClassLabel(names=_NAMES), |
|
} |
|
), |
|
supervised_keys=("image", "label"), |
|
citation=_CITATION, |
|
task_templates=[ |
|
ImageClassification( |
|
image_column="image", |
|
label_column="label", |
|
) |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
path = dl_manager.dowload(_URL) |
|
image_iters = dl_manager.iter_archive(path) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"images": image_iters} |
|
), |
|
] |
|
|
|
def _generate_examples(self, images): |
|
"""This function returns the examples in the raw form.""" |
|
for idx, filepath, image in enumerate(images): |
|
|
|
text = [c for c in str(filepath) if not 0 <= ord(c) <= 127][0] |
|
yield idx, { |
|
"label": text, |
|
"image": {"path": filepath, "bytes": image.read()} |
|
} |
|
|