alphabet / handwriting.py
AnaChikashua's picture
Create handwriting.py
487936c
import struct
import numpy as np
import datasets
from datasets.tasks import ImageClassification
_CITATION = """\
@article{lecun2010mnist,
title={MNIST handwritten digit database},
author={LeCun, Yann and Cortes, Corinna and Burges, CJ},
journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist},
volume={2},
year={2010}
}
"""
_DESCRIPTION = """\
The MNIST dataset consists of 70,000 28x28 black-and-white images in 10 classes (one for each digits), with 7,000
images per class. There are 60,000 training images and 10,000 test images.
"""
_URL = "https://huggingface.co/datasets/AnaChikashua/handwriting/resolve/main/handwriting_dataset.zip"
_NAMES = ['ა', 'ბ', 'გ', 'დ', 'ე', 'ვ', 'ზ', 'თ', 'ი', 'კ', 'ლ', 'მ', 'ნ', 'ო', 'პ', 'ჟ', 'რ', 'ს', 'ტ', 'უ', 'ფ', 'ქ', 'ღ', 'ყ', 'შ', 'ჩ', 'ც', 'ძ', 'წ', 'ჭ', 'ხ', 'ჯ', 'ჰ']
class MNIST(datasets.GeneratorBasedBuilder):
"""MNIST Data Set"""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="data",
version=datasets.Version("1.0.0"),
description=_DESCRIPTION,
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Image(),
"label": datasets.features.ClassLabel(names=_NAMES),
}
),
supervised_keys=("image", "label"),
citation=_CITATION,
task_templates=[
ImageClassification(
image_column="image",
label_column="label",
)
],
)
def _split_generators(self, dl_manager):
path = dl_manager.dowload(_URL)
image_iters = dl_manager.iter_archive(path)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"images": image_iters}
),
]
def _generate_examples(self, images):
"""This function returns the examples in the raw form."""
for idx, filepath, image in enumerate(images):
# extract the text from the filename
text = [c for c in str(filepath) if not 0 <= ord(c) <= 127][0]
yield idx, {
"label": text,
"image": {"path": filepath, "bytes": image.read()}
}