|
import time |
|
import tqdm |
|
import os |
|
import json |
|
|
|
from random import seed as set_seed |
|
|
|
import dsl |
|
from dsl import * |
|
|
|
import utils |
|
from utils import * |
|
|
|
import generators |
|
import verifiers |
|
|
|
|
|
|
|
def get_generators() -> dict: |
|
""" |
|
returns mapper from task identifiers (keys) to example generator functions |
|
""" |
|
prefix = 'generate_' |
|
return { |
|
strip_prefix(n, prefix): getattr(generators, n) for n in dir(generators) if n.startswith(prefix) |
|
} |
|
|
|
|
|
def get_verifiers() -> dict: |
|
""" |
|
returns mapper from task identifiers (keys) to example verifier functions |
|
""" |
|
prefix = 'verify_' |
|
return { |
|
strip_prefix(n, prefix): getattr(verifiers, n) for n in dir(verifiers) if n.startswith(prefix) |
|
} |
|
|
|
|
|
def get_rng_difficulty( |
|
example: dict |
|
) -> float: |
|
""" |
|
RNG-Difficulty: proxy measure for example difficulty, defined as the mean of sampled floats within example generation |
|
""" |
|
rng = getattr(utils, 'rng') |
|
setattr(utils, 'rng', []) |
|
return sum(rng) / len(rng) |
|
|
|
|
|
def get_pso_difficulty( |
|
example: dict |
|
) -> float: |
|
""" |
|
PSO-Difficulty: proxy measure for example difficulty, defined as weighted sum of #Pixels, #Symbols, #Objects |
|
""" |
|
i, o = example['input'], example['output'] |
|
hwi = height(i) * width(i) |
|
hwo = height(o) * width(o) |
|
pix_pct = (hwi + hwo) / 1800 |
|
col_pct = len(palette(i) | palette(o)) / 10 |
|
obj_dens = (len(objects(i, T, F, F)) / hwi + len(objects(o, T, F, F)) / hwo) / 2 |
|
return (pix_pct + col_pct + obj_dens) / 3 |
|
|
|
|
|
def demo_generator(key, n=6): |
|
with open(f'arc_original/training/{key}.json', 'r') as fp: |
|
original_task = json.load(fp) |
|
original_task = original_task['train'] + original_task['test'] |
|
generator = getattr(generators, f'generate_{key}') |
|
generated_examples = [generator(0, 1) for k in range(n)] |
|
plot_task(original_task) |
|
plot_task(generated_examples) |
|
|
|
|
|
def generate_dataset( |
|
path: str = 're_arc', |
|
seed: int = 42, |
|
n_examples: int = 1000, |
|
diff_lb: float = 0, |
|
diff_ub: float = 1 |
|
) -> None: |
|
""" |
|
generates dataset |
|
|
|
path: which folder to save data to |
|
seed: for deterministic generation / reproducibility |
|
n_examples: number of examples per task |
|
diff_lb: lower bound for difficulty |
|
diff_ub: upper bound for difficulty |
|
""" |
|
set_seed(seed) |
|
os.makedirs(path) |
|
tasks_path = os.path.join(path, 'tasks') |
|
os.makedirs(tasks_path) |
|
generators_mapper = get_generators() |
|
verifiers_mapper = get_verifiers() |
|
keys = sorted(generators_mapper.keys()) |
|
k = len(keys) |
|
desc = f'task 0/{k}, example 0/{n_examples}' |
|
pbar = tqdm.tqdm(enumerate(keys), desc=desc, position=0, leave=True, total=k) |
|
metadata = dict() |
|
for i, key in pbar: |
|
generator = generators_mapper[key] |
|
verifier = verifiers_mapper[key] |
|
seen = set() |
|
examples = [] |
|
stats = { |
|
'n_generations': 0, 'n_verified': 0, 'n_nondegenerate': 0, |
|
'rng_difficulties': [], 'pso_difficulties': [] |
|
} |
|
start = time.time() |
|
while len(examples) < n_examples: |
|
example, identifier, success = None, None, True |
|
try: |
|
example = generator(diff_lb, diff_ub) |
|
assert is_grid(example['input']) |
|
assert is_grid(example['output']) |
|
identifier = hash(example['input']) |
|
stats['n_generations'] += 1 |
|
except: |
|
success = False |
|
try: |
|
assert success and verifier(example['input']) == example['output'] |
|
stats['n_verified'] += 1 |
|
except: |
|
success = False |
|
try: |
|
assert success and example['input'] != example['output'] |
|
stats['n_nondegenerate'] += 1 |
|
except: |
|
success = False |
|
if success and identifier not in seen: |
|
examples.append(example) |
|
seen.add(identifier) |
|
stats['rng_difficulties'].append(get_rng_difficulty(example)) |
|
stats['pso_difficulties'].append(get_pso_difficulty(example)) |
|
desc = f'task {i+1}/{k}, example {len(examples)}/{n_examples}' |
|
pbar.set_description(desc) |
|
end = time.time() |
|
stats['runtime'] = end - start |
|
with open(os.path.join(tasks_path, f'{key}.json'), 'w') as fp: |
|
json.dump(examples, fp) |
|
metadata[key] = stats |
|
with open(os.path.join(path, 'metadata.json'), 'w') as fp: |
|
json.dump(metadata, fp) |
|
|
|
|
|
def demo_dataset( |
|
folder: str = 're_arc', |
|
n: int = 8, |
|
s: int = 0, |
|
e: int = 400 |
|
) -> None: |
|
""" |
|
visualizing snippets from a generated dataset (original, easy, medium and hard instances for each task) |
|
""" |
|
with open(f'{folder}/metadata.json', 'r') as fp: |
|
metadata = json.load(fp) |
|
for i, fn in enumerate(sorted(os.listdir(f'{folder}/tasks'))): |
|
if s <= i < e: |
|
key = fn[:8] |
|
with open(f'arc_original/training/{key}.json', 'r') as fp: |
|
original_task = json.load(fp) |
|
with open(f'{folder}/tasks/{key}.json', 'r') as fp: |
|
generated_task = json.load(fp) |
|
original_task = [format_example(example) for example in original_task['train'] + original_task['test']] |
|
generated_task = [format_example(example) for example in generated_task[:10*n]] |
|
difficulties = metadata[key]['pso_difficulties'][:9*n] |
|
generated_task = [ex for ex, diff in sorted(zip(generated_task, difficulties), key=lambda item: item[1])] |
|
easy = generated_task[1*n:2*n] |
|
hard = generated_task[8*n:9*n] |
|
print(key) |
|
print('original:') |
|
plot_task(original_task) |
|
print('generated (easy):') |
|
plot_task(easy) |
|
print('generated (hard):') |
|
plot_task(hard) |
|
|
|
|
|
def evaluate_verifiers_on_original_tasks() -> None: |
|
""" |
|
runs the verifiers on the original ARC training tasks |
|
""" |
|
verifiers = get_verifiers() |
|
dataset = dict() |
|
for key in verifiers.keys(): |
|
with open(f'arc_original/training/{key}.json', 'r') as fp: |
|
task = json.load(fp) |
|
dataset[key] = format_task(task) |
|
fix_bugs(dataset) |
|
failed_on = set() |
|
for key, verifier in verifiers.items(): |
|
task = dataset[key] |
|
try: |
|
for example in task['train'] + task['test']: |
|
assert verifier(example['input']) == example['output'] |
|
except: |
|
failed_on.add(key) |
|
n = len(dataset) |
|
k = len(failed_on) |
|
print(f'verification programs work for all examples for {n-k}/{n} tasks') |
|
print(f'verification fails (on one example) for tasks {failed_on}') |
|
|
|
|