|
import os |
|
import numpy as np |
|
import json |
|
import pdb |
|
from matplotlib import pyplot as plt |
|
|
|
|
|
from scipy.ndimage import binary_dilation, binary_erosion, binary_hit_or_miss |
|
import random |
|
|
|
from ListSelEm import * |
|
from Utils import Process, Change_Colour |
|
|
|
|
|
def generate_inp_out_catB_Hard(list_se, k_iterate, **param): |
|
""" |
|
SE0/SE1 - Hit-Or-Miss |
|
SE2/3 - Dilate (SE0) |
|
SE2/3 - Erode (SE0) |
|
SE4/5 - Dilate (SE1) |
|
SE4/5 - Erode (SE1) |
|
""" |
|
|
|
sz = np.random.randint(2, 4) |
|
|
|
|
|
base_img1 = np.zeros((param['img_size'], param['img_size']), dtype=np.int32) |
|
idx1 = np.random.randint(0, param['img_size']//2, size=sz) |
|
idx2 = np.random.randint(0, param['img_size']//2, size=sz) |
|
base_img1[idx1, idx2] = 1 |
|
base_img1 = binary_dilation(base_img1, list_se_3x3[list_se[0]]) |
|
|
|
|
|
base_img2 = np.zeros((param['img_size'], param['img_size']), dtype=np.int32) |
|
idx1 = np.random.randint(param['img_size']//2, param['img_size'], size=sz) |
|
idx2 = np.random.randint(param['img_size']//2, param['img_size'], size=sz) |
|
base_img2[idx1, idx2] = 1 |
|
base_img2 = binary_dilation(base_img2, list_se_3x3[list_se[1]]) |
|
|
|
|
|
base_img = np.logical_or(base_img1, base_img2)*1 |
|
|
|
|
|
inp_img = np.array(base_img*1, copy=True) |
|
out_img = np.array(base_img*1, copy=True) |
|
|
|
|
|
tmp_img = binary_hit_or_miss(out_img, list_se_3x3[list_se[0]]) |
|
out_img[tmp_img] = 2 |
|
out_img = Process(out_img, num_colors=2) |
|
|
|
|
|
for idx in range(k_iterate): |
|
out_img[:, :, 0] = binary_dilation(out_img[:, :, 0], list_se_3x3[list_se[2]]) |
|
|
|
for idx in range(k_iterate): |
|
out_img[:, :, 0] = binary_erosion(out_img[:, :, 0], list_se_3x3[list_se[2]]) |
|
|
|
|
|
out_img[:, :, 1] = binary_dilation(out_img[:, :, 1], list_se_3x3[list_se[0]]) |
|
out_img[:, :, 1] = binary_dilation(out_img[:, :, 1], list_se_3x3[list_se[3]]) |
|
out_img[:, :, 1] = binary_dilation(out_img[:, :, 1], list_se_3x3[list_se[4]]) |
|
out_img[:, :, 1] = binary_dilation(out_img[:, :, 1], list_se_3x3[list_se[5]]) |
|
out_img[:, :, 1] = binary_erosion(out_img[:, :, 1], list_se_3x3[list_se[3]]) |
|
out_img[:, :, 1] = binary_erosion(out_img[:, :, 1], list_se_3x3[list_se[4]]) |
|
out_img[:, :, 1] = binary_erosion(out_img[:, :, 1], list_se_3x3[list_se[5]]) |
|
|
|
|
|
rule = np.array([[0, 0, 0], [0, 1, 2], [1, 0, 1], [1, 1, 2]], dtype=np.int32) |
|
out_img = Change_Colour(out_img, rule) |
|
return inp_img, out_img |
|
|
|
|
|
def generate_one_task_CatB_Hard(**param): |
|
""" |
|
""" |
|
k_example = 0 |
|
list_se_idx = np.random.randint(0, 8, size=6) |
|
k_iterate = np.random.randint(2, 5) |
|
data = [] |
|
|
|
while k_example < param['no_examples_per_task']: |
|
inp_img, out_img = generate_inp_out_catB_Hard(list_se_idx, k_iterate, **param) |
|
|
|
|
|
FLAG = False |
|
if np.all(inp_img*1 == 1) or np.all(inp_img*1 == 0): |
|
FLAG = True |
|
elif np.all(out_img*1 == 1) or np.all(out_img*1 == 0): |
|
FLAG = True |
|
|
|
if FLAG: |
|
|
|
|
|
data = [] |
|
list_se_idx = np.random.randint(0, 8, size=6) |
|
k_example = -1 |
|
else: |
|
data.append((inp_img, out_img)) |
|
|
|
|
|
k_example += 1 |
|
|
|
return data, list_se_idx, k_iterate |
|
|
|
|
|
def write_dict_json_CatB_Hard(data, fname): |
|
""" |
|
""" |
|
dict_data = [] |
|
for (inp, out) in data: |
|
inp = [[int(y) for y in x] for x in inp] |
|
out = [[int(y) for y in x] for x in out] |
|
dict_data.append({"input": inp, "output": out}) |
|
|
|
with open(fname, "w") as f: |
|
f.write(json.dumps(dict_data)) |
|
|
|
|
|
def write_solution_CatB_Hard(list_se_idx, k_iterate, fname): |
|
""" |
|
""" |
|
color_rule = np.array([[0, 0, 0], [0, 1, 2], [1, 0, 1], [1, 1, 2]], dtype=np.int32) |
|
with open(fname, 'w') as f: |
|
f.write("Hit-Or-Miss SE{} \n".format(list_se_idx[0]+1)) |
|
f.write("Band 1 - Iterate {} times Dilation SE{} \n".format(k_iterate, list_se_idx[2]+1)) |
|
f.write("Band 1 - Iterate {} times Erosion SE{} \n".format(k_iterate, list_se_idx[2]+1)) |
|
f.write("Band 2 - Dilation SE{} \n".format(list_se_idx[0]+1)) |
|
f.write("Band 2 - Dilation SE{} \n".format(list_se_idx[3]+1)) |
|
f.write("Band 2 - Dilation SE{} \n".format(list_se_idx[4]+1)) |
|
f.write("Band 2 - Dilation SE{} \n".format(list_se_idx[5]+1)) |
|
f.write("Band 2 - Erosion SE{} \n".format(list_se_idx[3]+1)) |
|
f.write("Band 2 - Erosion SE{} \n".format(list_se_idx[4]+1)) |
|
f.write("Band 2 - Erosion SE{} \n".format(list_se_idx[5]+1)) |
|
f.write("Color rule : {}".format(json.dumps([[int(y) for y in x] for x in color_rule]))) |
|
f.write("\n") |
|
|
|
|
|
def write_solution_CatB_Hard_json(list_se_idx, k_iterate, fname): |
|
""" |
|
Band, iterate, op, se |
|
""" |
|
color_rule = np.array([[0, 0, 0], [0, 1, 2], [1, 0, 1], [1, 1, 2]], dtype=np.int32) |
|
data = [] |
|
data.append((None, 1, "Hit-Or-Miss", "SE{}".format(list_se_idx[0]+1))) |
|
data.append((1, k_iterate, "Dilation", "SE{}".format(list_se_idx[2]+1))) |
|
data.append((1, k_iterate, "Erosion", "SE{}".format(list_se_idx[2]+1))) |
|
data.append((2, 1, "Dilation", "SE{}".format(list_se_idx[0]+1))) |
|
data.append((2, 1, "Dilation", "SE{}".format(list_se_idx[3]+1))) |
|
data.append((2, 1, "Dilation", "SE{}".format(list_se_idx[4]+1))) |
|
data.append((2, 1, "Dilation", "SE{}".format(list_se_idx[5]+1))) |
|
data.append((2, 1, "Erosion", "SE{}".format(list_se_idx[3]+1))) |
|
data.append((2, 1, "Erosion", "SE{}".format(list_se_idx[4]+1))) |
|
data.append((2, 1, "Erosion", "SE{}".format(list_se_idx[5]+1))) |
|
data.append((None, 1, "change_color", [[int(y) for y in x] for x in color_rule])) |
|
|
|
with open(fname, "w") as f: |
|
f.write(json.dumps(data)) |
|
|
|
|
|
def generate_100_tasks_CatB_Hard(seed, **param): |
|
""" |
|
""" |
|
np.random.seed(seed) |
|
os.makedirs("./Dataset/CatB_Hard", exist_ok=True) |
|
for task_no in range(100): |
|
data, list_se_idx, k_iterate = generate_one_task_CatB_Hard(**param) |
|
fname = './Dataset/CatB_Hard/Task{:03d}.json'.format(task_no) |
|
write_dict_json_CatB_Hard(data, fname) |
|
|
|
fname = './Dataset/CatB_Hard/Task{:03d}_soln.txt'.format(task_no) |
|
write_solution_CatB_Hard(list_se_idx, k_iterate, fname) |
|
|
|
fname = './Dataset/CatB_Hard/Task{:03d}_soln.json'.format(task_no) |
|
write_solution_CatB_Hard_json(list_se_idx, k_iterate, fname) |
|
|
|
|
|
if __name__ == "__main__": |
|
param = {} |
|
param['img_size'] = 15 |
|
param['se_size'] = 3 |
|
param['seq_length'] = 4 |
|
param['no_examples_per_task'] = 4 |
|
param['no_colors'] = 3 |
|
|
|
generate_100_tasks_CatB_Hard(32, **param) |
|
|