diarizefix / audio_cleaning_test.py
Alignment-Lab-AI's picture
Upload folder using huggingface_hub
c71fb67 verified
import os
import librosa
import numpy as np
from pydub import AudioSegment
def clean_audio(audio_path, output_path, min_silence_len=1000, silence_thresh=-40, keep_silence=100):
# Load the audio file
audio_segment = AudioSegment.from_file(audio_path)
# Convert to mono
audio_segment = audio_segment.set_channels(1)
# Split on silence
chunks = split_on_silence(
audio_segment,
min_silence_len=min_silence_len,
silence_thresh=silence_thresh,
keep_silence=keep_silence,
)
# Find the main speaker based on total duration
main_speaker_chunk = max(chunks, key=lambda chunk: len(chunk))
# Export the main speaker's audio
main_speaker_chunk.export(output_path, format="wav")
def split_on_silence(audio_segment, min_silence_len=1000, silence_thresh=-40, keep_silence=100):
"""
Splits an AudioSegment on silent sections.
"""
chunks = []
start_idx = 0
while start_idx < len(audio_segment):
silence_start = audio_segment.find_silence(
min_silence_len=min_silence_len,
silence_thresh=silence_thresh,
start_sec=start_idx / 1000.0,
)
if silence_start is None:
chunks.append(audio_segment[start_idx:])
break
silence_end = silence_start + min_silence_len
keep_silence_time = min(keep_silence, silence_end - silence_start)
silence_end -= keep_silence_time
chunks.append(audio_segment[start_idx:silence_end])
start_idx = silence_end + keep_silence_time
return chunks
# Usage example
audio_path = "francine-master.wav"
output_path = "franclean-master.wav"
clean_audio(audio_path, output_path)