Datasets:

Modalities:
Tabular
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
dieineb commited on
Commit
f3d6733
1 Parent(s): 5c2c078

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -2
README.md CHANGED
@@ -20,7 +20,69 @@ dataset_info:
20
  num_examples: 100836
21
  download_size: 1166644
22
  dataset_size: 3226752
 
 
 
 
 
 
23
  ---
24
- # Dataset Card for "movielens_user_ratings.csv"
25
 
26
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  num_examples: 100836
21
  download_size: 1166644
22
  dataset_size: 3226752
23
+ license: other
24
+ language:
25
+ - en
26
+ pretty_name: movielens-user-ratings
27
+ size_categories:
28
+ - 100K<n<1M
29
  ---
 
30
 
31
+ # Movielens-user-ratings
32
+ This dataset contains a set of movie ratings from the MovieLens website, a movie recommendation service.
33
+
34
+ ## Overview
35
+ MovieLens data sets were collected by the GroupLens Research Project at the University of Minnesota.
36
+ The GroupLens Research has collected and made available rating data sets from the [MovieLens website](https://movielens.org).
37
+ MovieLens 100K movie ratings contain 100,000 ratings(1-5)from 943 users on 1682 movies. Released 1998.
38
+
39
+ ## Dataset Details
40
+ The dataset from Kaggle is named [MovieLens100](https://www.kaggle.com/datasets/abhikjha/movielens-100k).
41
+ Contains different CSV files for Movies, Ratings, Links, and Tags. We used only the file "ratings.csv" in **movielens-user-ratings dataset**.
42
+
43
+ - Dataset Name: movielens-user-ratings
44
+ - Language: English
45
+ - Total Size: 100,836 demonstrations
46
+
47
+ **Citation:**
48
+ ```latex
49
+ @article{10.1145/2827872,
50
+ author = {Harper, F. Maxwell and Konstan, Joseph A.},
51
+ title = {The MovieLens Datasets: History and Context},
52
+ year = {2015},
53
+ issue_date = {January 2016},
54
+ publisher = {Association for Computing Machinery},
55
+ address = {New York, NY, USA},
56
+ volume = {5},
57
+ number = {4},
58
+ issn = {2160-6455},
59
+ url = {https://doi.org/10.1145/2827872},
60
+ doi = {10.1145/2827872},
61
+ journal = {ACM Trans. Interact. Intell. Syst.},
62
+ month = dec,
63
+ articleno = {19},
64
+ numpages = {19},
65
+ keywords = {Datasets, recommendations, ratings, MovieLens}
66
+ }
67
+ ```
68
+ ## Contents
69
+
70
+ The dataset consists of a data frame with the following columns:
71
+
72
+ - **userId:** a unique identifier of the user who made the rating.
73
+ - **movieId:** a unique identifier of the rated movie.
74
+ - **rating:** the score of the rating on a five-star scale.
75
+ - **timestamp:** the timestamp of the ratings.
76
+
77
+ ## How to use
78
+
79
+ ```python
80
+ from datasets import load_dataset
81
+
82
+ dataset = load_dataset("AiresPucrs/movielens-user-ratings", split='train')
83
+
84
+ ```
85
+
86
+ ## License
87
+
88
+ This dataset is licensed under the USAGE LICENSE - [Other](https://files.grouplens.org/datasets/movielens/ml-100k-README.txt).