|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import datasets
|
|
|
|
|
|
|
|
_CITATION = """\
|
|
@InProceedings{vivos:2016,
|
|
Address = {Ho Chi Minh, Vietnam}
|
|
title = {VIVOS: 15 hours of recording speech prepared for Vietnamese Automatic Speech Recognition},
|
|
author={Prof. Vu Hai Quan},
|
|
year={2016}
|
|
}
|
|
"""
|
|
|
|
_DESCRIPTION = """\
|
|
VIVOS is a free Vietnamese speech corpus consisting of 15 hours of recording speech prepared for
|
|
Vietnamese Automatic Speech Recognition task.
|
|
The corpus was prepared by AILAB, a computer science lab of VNUHCM - University of Science, with Prof. Vu Hai Quan is the head of.
|
|
We publish this corpus in hope to attract more scientists to solve Vietnamese speech recognition problems.
|
|
"""
|
|
|
|
_HOMEPAGE = "https://ailab.hcmus.edu.vn/vivos"
|
|
|
|
_LICENSE = "cc-by-sa-4.0"
|
|
|
|
_DATA_URL = "https://ailab.hcmus.edu.vn/assets/vivos.tar.gz"
|
|
|
|
_PROMPTS_URLS = {
|
|
"train": "https://s3.amazonaws.com/datasets.huggingface.co/vivos/train/prompts.txt",
|
|
"test": "https://s3.amazonaws.com/datasets.huggingface.co/vivos/test/prompts.txt",
|
|
}
|
|
|
|
|
|
class VivosDataset(datasets.GeneratorBasedBuilder):
|
|
"""VIVOS is a free Vietnamese speech corpus consisting of 15 hours of recording speech prepared for
|
|
Vietnamese Automatic Speech Recognition task."""
|
|
|
|
VERSION = datasets.Version("1.1.0")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _info(self):
|
|
return datasets.DatasetInfo(
|
|
|
|
description=_DESCRIPTION,
|
|
features=datasets.Features(
|
|
{
|
|
"speaker_id": datasets.Value("string"),
|
|
"path": datasets.Value("string"),
|
|
"audio": datasets.Audio(sampling_rate=16_000),
|
|
"sentence": datasets.Value("string"),
|
|
}
|
|
),
|
|
supervised_keys=None,
|
|
homepage=_HOMEPAGE,
|
|
license=_LICENSE,
|
|
citation=_CITATION,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
"""Returns SplitGenerators."""
|
|
|
|
|
|
|
|
|
|
|
|
prompts_paths = dl_manager.download(_PROMPTS_URLS)
|
|
archive = dl_manager.download(_DATA_URL)
|
|
train_dir = "vivos/train"
|
|
test_dir = "vivos/test"
|
|
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
|
|
gen_kwargs={
|
|
"prompts_path": prompts_paths["train"],
|
|
"path_to_clips": train_dir + "/waves",
|
|
"audio_files": dl_manager.iter_archive(archive),
|
|
},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TEST,
|
|
|
|
gen_kwargs={
|
|
"prompts_path": prompts_paths["test"],
|
|
"path_to_clips": test_dir + "/waves",
|
|
"audio_files": dl_manager.iter_archive(archive),
|
|
},
|
|
),
|
|
]
|
|
|
|
def _generate_examples(self, prompts_path, path_to_clips, audio_files):
|
|
"""Yields examples as (key, example) tuples."""
|
|
|
|
|
|
examples = {}
|
|
with open(prompts_path, encoding="utf-8") as f:
|
|
for row in f:
|
|
data = row.strip().split(" ", 1)
|
|
speaker_id = data[0].split("_")[0]
|
|
audio_path = "/".join([path_to_clips, speaker_id, data[0] + ".wav"])
|
|
examples[audio_path] = {
|
|
"speaker_id": speaker_id,
|
|
"path": audio_path,
|
|
"sentence": data[1],
|
|
}
|
|
inside_clips_dir = False
|
|
id_ = 0
|
|
for path, f in audio_files:
|
|
if path.startswith(path_to_clips):
|
|
inside_clips_dir = True
|
|
if path in examples:
|
|
audio = {"path": path, "bytes": f.read()}
|
|
yield id_, {**examples[path], "audio": audio}
|
|
id_ += 1
|
|
elif inside_clips_dir:
|
|
break
|
|
|