add python script
Browse files- example.py +41 -0
- quakeflow_sc.py +346 -0
example.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%
|
2 |
+
import numpy as np
|
3 |
+
from datasets import load_dataset
|
4 |
+
from torch.utils.data import DataLoader
|
5 |
+
|
6 |
+
# quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="station_test", split="test")
|
7 |
+
quakeflow_nc = load_dataset(
|
8 |
+
"./quakeflow_sc.py",
|
9 |
+
name="station_test",
|
10 |
+
# name="event_test",
|
11 |
+
split="test",
|
12 |
+
download_mode="force_redownload",
|
13 |
+
)
|
14 |
+
|
15 |
+
# print the first sample of the iterable dataset
|
16 |
+
for example in quakeflow_nc:
|
17 |
+
print("\nIterable test\n")
|
18 |
+
print(example.keys())
|
19 |
+
for key in example.keys():
|
20 |
+
if key == "data":
|
21 |
+
print(key, np.array(example[key]).shape)
|
22 |
+
else:
|
23 |
+
print(key, example[key])
|
24 |
+
break
|
25 |
+
|
26 |
+
# %%
|
27 |
+
quakeflow_nc = quakeflow_nc.with_format("torch")
|
28 |
+
dataloader = DataLoader(quakeflow_nc, batch_size=8, num_workers=0, collate_fn=lambda x: x)
|
29 |
+
|
30 |
+
for batch in dataloader:
|
31 |
+
print("\nDataloader test\n")
|
32 |
+
print(f"Batch size: {len(batch)}")
|
33 |
+
print(batch[0].keys())
|
34 |
+
for key in batch[0].keys():
|
35 |
+
if key == "data":
|
36 |
+
print(key, np.array(batch[0][key]).shape)
|
37 |
+
else:
|
38 |
+
print(key, batch[0][key])
|
39 |
+
break
|
40 |
+
|
41 |
+
# %%
|
quakeflow_sc.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# TODO: Address all TODOs and remove all explanatory comments
|
16 |
+
# Lint as: python3
|
17 |
+
"""QuakeFlow_SC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format."""
|
18 |
+
|
19 |
+
|
20 |
+
from typing import Dict, List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
import fsspec
|
24 |
+
import h5py
|
25 |
+
import numpy as np
|
26 |
+
import torch
|
27 |
+
|
28 |
+
# TODO: Add BibTeX citation
|
29 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
30 |
+
_CITATION = """\
|
31 |
+
@InProceedings{huggingface:dataset,
|
32 |
+
title = {SCEDC dataset for QuakeFlow},
|
33 |
+
author={Zhu et al.},
|
34 |
+
year={2023}
|
35 |
+
}
|
36 |
+
"""
|
37 |
+
|
38 |
+
# TODO: Add description of the dataset here
|
39 |
+
# You can copy an official description
|
40 |
+
_DESCRIPTION = """\
|
41 |
+
A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format.
|
42 |
+
"""
|
43 |
+
|
44 |
+
# TODO: Add a link to an official homepage for the dataset here
|
45 |
+
_HOMEPAGE = ""
|
46 |
+
|
47 |
+
# TODO: Add the licence for the dataset here if you can find it
|
48 |
+
_LICENSE = ""
|
49 |
+
|
50 |
+
# TODO: Add link to the official dataset URLs here
|
51 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
52 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
53 |
+
_REPO = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/waveform_h5"
|
54 |
+
_FILES = [
|
55 |
+
"1999.h5",
|
56 |
+
"2000.h5",
|
57 |
+
"2001.h5",
|
58 |
+
"2002.h5",
|
59 |
+
"2003.h5",
|
60 |
+
"2004.h5",
|
61 |
+
"2005.h5",
|
62 |
+
"2006.h5",
|
63 |
+
"2007.h5",
|
64 |
+
"2008.h5",
|
65 |
+
"2009.h5",
|
66 |
+
"2010.h5",
|
67 |
+
"2011.h5",
|
68 |
+
"2012.h5",
|
69 |
+
"2013.h5",
|
70 |
+
"2014.h5",
|
71 |
+
"2015.h5",
|
72 |
+
"2016.h5",
|
73 |
+
"2017.h5",
|
74 |
+
"2018.h5",
|
75 |
+
"2019_0.h5",
|
76 |
+
"2019_1.h5",
|
77 |
+
"2019_2.h5",
|
78 |
+
"2020_0.h5",
|
79 |
+
"2020_1.h5",
|
80 |
+
"2021.h5",
|
81 |
+
"2022.h5",
|
82 |
+
"2023.h5",
|
83 |
+
]
|
84 |
+
_URLS = {
|
85 |
+
"station": [f"{_REPO}/{x}" for x in _FILES],
|
86 |
+
"event": [f"{_REPO}/{x}" for x in _FILES],
|
87 |
+
"station_train": [f"{_REPO}/{x}" for x in _FILES[:-1]],
|
88 |
+
"event_train": [f"{_REPO}/{x}" for x in _FILES[:-1]],
|
89 |
+
"station_test": [f"{_REPO}/{x}" for x in _FILES[-1:]],
|
90 |
+
"event_test": [f"{_REPO}/{x}" for x in _FILES[-1:]],
|
91 |
+
}
|
92 |
+
|
93 |
+
|
94 |
+
class BatchBuilderConfig(datasets.BuilderConfig):
|
95 |
+
"""
|
96 |
+
yield a batch of event-based sample, so the number of sample stations can vary among batches
|
97 |
+
Batch Config for QuakeFlow_SC
|
98 |
+
"""
|
99 |
+
|
100 |
+
def __init__(self, **kwargs):
|
101 |
+
super().__init__(**kwargs)
|
102 |
+
|
103 |
+
|
104 |
+
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
105 |
+
class QuakeFlow_SC(datasets.GeneratorBasedBuilder):
|
106 |
+
"""QuakeFlow_SC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format."""
|
107 |
+
|
108 |
+
VERSION = datasets.Version("1.1.0")
|
109 |
+
|
110 |
+
nt = 8192
|
111 |
+
|
112 |
+
# This is an example of a dataset with multiple configurations.
|
113 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
114 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
115 |
+
|
116 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
117 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
118 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
119 |
+
|
120 |
+
# You will be able to load one or the other configurations in the following list with
|
121 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
122 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
123 |
+
|
124 |
+
# default config, you can change batch_size and num_stations_list when use `datasets.load_dataset`
|
125 |
+
BUILDER_CONFIGS = [
|
126 |
+
datasets.BuilderConfig(
|
127 |
+
name="station", version=VERSION, description="yield station-based samples one by one of whole dataset"
|
128 |
+
),
|
129 |
+
datasets.BuilderConfig(
|
130 |
+
name="event", version=VERSION, description="yield event-based samples one by one of whole dataset"
|
131 |
+
),
|
132 |
+
datasets.BuilderConfig(
|
133 |
+
name="station_train",
|
134 |
+
version=VERSION,
|
135 |
+
description="yield station-based samples one by one of training dataset",
|
136 |
+
),
|
137 |
+
datasets.BuilderConfig(
|
138 |
+
name="event_train", version=VERSION, description="yield event-based samples one by one of training dataset"
|
139 |
+
),
|
140 |
+
datasets.BuilderConfig(
|
141 |
+
name="station_test", version=VERSION, description="yield station-based samples one by one of test dataset"
|
142 |
+
),
|
143 |
+
datasets.BuilderConfig(
|
144 |
+
name="event_test", version=VERSION, description="yield event-based samples one by one of test dataset"
|
145 |
+
),
|
146 |
+
]
|
147 |
+
|
148 |
+
DEFAULT_CONFIG_NAME = (
|
149 |
+
"station_test" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
150 |
+
)
|
151 |
+
|
152 |
+
def _info(self):
|
153 |
+
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
154 |
+
if (
|
155 |
+
(self.config.name == "station")
|
156 |
+
or (self.config.name == "station_train")
|
157 |
+
or (self.config.name == "station_test")
|
158 |
+
):
|
159 |
+
features = datasets.Features(
|
160 |
+
{
|
161 |
+
"data": datasets.Array2D(shape=(3, self.nt), dtype="float32"),
|
162 |
+
"phase_time": datasets.Sequence(datasets.Value("string")),
|
163 |
+
"phase_index": datasets.Sequence(datasets.Value("int32")),
|
164 |
+
"phase_type": datasets.Sequence(datasets.Value("string")),
|
165 |
+
"phase_polarity": datasets.Sequence(datasets.Value("string")),
|
166 |
+
"begin_time": datasets.Value("string"),
|
167 |
+
"end_time": datasets.Value("string"),
|
168 |
+
"event_time": datasets.Value("string"),
|
169 |
+
"event_time_index": datasets.Value("int32"),
|
170 |
+
"event_location": datasets.Sequence(datasets.Value("float32")),
|
171 |
+
"station_location": datasets.Sequence(datasets.Value("float32")),
|
172 |
+
},
|
173 |
+
)
|
174 |
+
elif (self.config.name == "event") or (self.config.name == "event_train") or (self.config.name == "event_test"):
|
175 |
+
features = datasets.Features(
|
176 |
+
{
|
177 |
+
"data": datasets.Array3D(shape=(None, 3, self.nt), dtype="float32"),
|
178 |
+
"phase_time": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
179 |
+
"phase_index": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))),
|
180 |
+
"phase_type": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
181 |
+
"phase_polarity": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
182 |
+
"begin_time": datasets.Value("string"),
|
183 |
+
"end_time": datasets.Value("string"),
|
184 |
+
"event_time": datasets.Value("string"),
|
185 |
+
"event_time_index": datasets.Value("int32"),
|
186 |
+
"event_location": datasets.Sequence(datasets.Value("float32")),
|
187 |
+
"station_location": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
|
188 |
+
},
|
189 |
+
)
|
190 |
+
else:
|
191 |
+
raise ValueError(f"config.name = {self.config.name} is not in BUILDER_CONFIGS")
|
192 |
+
|
193 |
+
return datasets.DatasetInfo(
|
194 |
+
# This is the description that will appear on the datasets page.
|
195 |
+
description=_DESCRIPTION,
|
196 |
+
# This defines the different columns of the dataset and their types
|
197 |
+
features=features, # Here we define them above because they are different between the two configurations
|
198 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
199 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
200 |
+
# supervised_keys=("sentence", "label"),
|
201 |
+
# Homepage of the dataset for documentation
|
202 |
+
homepage=_HOMEPAGE,
|
203 |
+
# License for the dataset if available
|
204 |
+
license=_LICENSE,
|
205 |
+
# Citation for the dataset
|
206 |
+
citation=_CITATION,
|
207 |
+
)
|
208 |
+
|
209 |
+
def _split_generators(self, dl_manager):
|
210 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
211 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
212 |
+
|
213 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
214 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
215 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
216 |
+
urls = _URLS[self.config.name]
|
217 |
+
# files = dl_manager.download(urls)
|
218 |
+
# files = dl_manager.download_and_extract(urls)
|
219 |
+
files = ["waveform_h5/1999.h5", "waveform_h5/2000.h5"]
|
220 |
+
print(files)
|
221 |
+
|
222 |
+
if self.config.name == "station" or self.config.name == "event":
|
223 |
+
return [
|
224 |
+
datasets.SplitGenerator(
|
225 |
+
name=datasets.Split.TRAIN,
|
226 |
+
# These kwargs will be passed to _generate_examples
|
227 |
+
gen_kwargs={
|
228 |
+
"filepath": files[:-1],
|
229 |
+
"split": "train",
|
230 |
+
},
|
231 |
+
),
|
232 |
+
datasets.SplitGenerator(
|
233 |
+
name=datasets.Split.TEST,
|
234 |
+
gen_kwargs={"filepath": files[-1:], "split": "test"},
|
235 |
+
),
|
236 |
+
]
|
237 |
+
elif self.config.name == "station_train" or self.config.name == "event_train":
|
238 |
+
return [
|
239 |
+
datasets.SplitGenerator(
|
240 |
+
name=datasets.Split.TRAIN,
|
241 |
+
gen_kwargs={
|
242 |
+
"filepath": files,
|
243 |
+
"split": "train",
|
244 |
+
},
|
245 |
+
),
|
246 |
+
]
|
247 |
+
elif self.config.name == "station_test" or self.config.name == "event_test":
|
248 |
+
return [
|
249 |
+
datasets.SplitGenerator(
|
250 |
+
name=datasets.Split.TEST,
|
251 |
+
gen_kwargs={"filepath": files, "split": "test"},
|
252 |
+
),
|
253 |
+
]
|
254 |
+
else:
|
255 |
+
raise ValueError("config.name is not in BUILDER_CONFIGS")
|
256 |
+
|
257 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
258 |
+
def _generate_examples(self, filepath, split):
|
259 |
+
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
260 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
261 |
+
|
262 |
+
for file in filepath:
|
263 |
+
with fsspec.open(file, "rb") as fs:
|
264 |
+
with h5py.File(fs, "r") as fp:
|
265 |
+
event_ids = list(fp.keys())
|
266 |
+
for event_id in event_ids:
|
267 |
+
event = fp[event_id]
|
268 |
+
event_attrs = event.attrs
|
269 |
+
begin_time = event_attrs["begin_time"]
|
270 |
+
end_time = event_attrs["end_time"]
|
271 |
+
event_location = [
|
272 |
+
event_attrs["longitude"],
|
273 |
+
event_attrs["latitude"],
|
274 |
+
event_attrs["depth_km"],
|
275 |
+
]
|
276 |
+
event_time = event_attrs["event_time"]
|
277 |
+
event_time_index = event_attrs["event_time_index"]
|
278 |
+
station_ids = list(event.keys())
|
279 |
+
if len(station_ids) == 0:
|
280 |
+
continue
|
281 |
+
if (
|
282 |
+
(self.config.name == "station")
|
283 |
+
or (self.config.name == "station_train")
|
284 |
+
or (self.config.name == "station_test")
|
285 |
+
):
|
286 |
+
waveforms = np.zeros([3, self.nt], dtype="float32")
|
287 |
+
|
288 |
+
for i, sta_id in enumerate(station_ids):
|
289 |
+
waveforms[:, : self.nt] = event[sta_id][:, : self.nt]
|
290 |
+
attrs = event[sta_id].attrs
|
291 |
+
phase_type = attrs["phase_type"]
|
292 |
+
phase_time = attrs["phase_time"]
|
293 |
+
phase_index = attrs["phase_index"]
|
294 |
+
phase_polarity = attrs["phase_polarity"]
|
295 |
+
station_location = [attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3]
|
296 |
+
|
297 |
+
yield f"{event_id}/{sta_id}", {
|
298 |
+
"data": waveforms,
|
299 |
+
"phase_time": phase_time,
|
300 |
+
"phase_index": phase_index,
|
301 |
+
"phase_type": phase_type,
|
302 |
+
"phase_polarity": phase_polarity,
|
303 |
+
"begin_time": begin_time,
|
304 |
+
"end_time": end_time,
|
305 |
+
"event_time": event_time,
|
306 |
+
"event_time_index": event_time_index,
|
307 |
+
"event_location": event_location,
|
308 |
+
"station_location": station_location,
|
309 |
+
}
|
310 |
+
|
311 |
+
elif (
|
312 |
+
(self.config.name == "event")
|
313 |
+
or (self.config.name == "event_train")
|
314 |
+
or (self.config.name == "event_test")
|
315 |
+
):
|
316 |
+
|
317 |
+
waveforms = np.zeros([len(station_ids), 3, self.nt], dtype="float32")
|
318 |
+
phase_type = []
|
319 |
+
phase_time = []
|
320 |
+
phase_index = []
|
321 |
+
phase_polarity = []
|
322 |
+
station_location = []
|
323 |
+
|
324 |
+
for i, sta_id in enumerate(station_ids):
|
325 |
+
waveforms[i, :, : self.nt] = event[sta_id][:, : self.nt]
|
326 |
+
attrs = event[sta_id].attrs
|
327 |
+
phase_type.append(list(attrs["phase_type"]))
|
328 |
+
phase_time.append(list(attrs["phase_time"]))
|
329 |
+
phase_index.append(list(attrs["phase_index"]))
|
330 |
+
phase_polarity.append(list(attrs["phase_polarity"]))
|
331 |
+
station_location.append(
|
332 |
+
[attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3]
|
333 |
+
)
|
334 |
+
yield event_id, {
|
335 |
+
"data": waveforms,
|
336 |
+
"phase_time": phase_time,
|
337 |
+
"phase_index": phase_index,
|
338 |
+
"phase_type": phase_type,
|
339 |
+
"phase_polarity": phase_polarity,
|
340 |
+
"begin_time": begin_time,
|
341 |
+
"end_time": end_time,
|
342 |
+
"event_time": event_time,
|
343 |
+
"event_time_index": event_time_index,
|
344 |
+
"event_location": event_location,
|
345 |
+
"station_location": station_location,
|
346 |
+
}
|