remove batched operation and leave it to sampler
Browse files- README.md +30 -17
- quakeflow_nc.py +29 -78
README.md
CHANGED
@@ -84,7 +84,21 @@ import torch
|
|
84 |
from torch.utils.data import Dataset, IterableDataset, DataLoader
|
85 |
from datasets import load_dataset
|
86 |
```
|
87 |
-
We have 2 configurations for the dataset: `NCEDC` and `
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
```python
|
89 |
# load dataset
|
90 |
# ATTENTION: Streaming(Iterable Dataset) is difficult to support because of the feature of HDF5
|
@@ -96,8 +110,8 @@ quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", split="train")
|
|
96 |
# or
|
97 |
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="NCEDC", split="train")
|
98 |
|
99 |
-
# to load "
|
100 |
-
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="
|
101 |
```
|
102 |
|
103 |
If you want to use the first several shards of the dataset, you can download the script `quakeflow_nc.py` and change the code as below:
|
@@ -145,38 +159,37 @@ for batch in dataloader:
|
|
145 |
break
|
146 |
```
|
147 |
|
148 |
-
#### Usage for `
|
149 |
-
|
|
|
150 |
```python
|
151 |
-
|
152 |
|
153 |
# for PyTorch DataLoader, we need to divide the dataset into several shards
|
154 |
num_workers=4
|
155 |
-
|
156 |
# because add examples formatting to get tensors when using the "torch" format
|
157 |
# has not been implemented yet, we need to manually add the formatting
|
158 |
-
|
159 |
def reorder_keys(example):
|
160 |
-
example["waveform"] = example["waveform"].permute(1,2,
|
161 |
-
example["phase_pick"] = example["phase_pick"].permute(1,2,
|
162 |
-
example["station_location"] = example["station_location"].permute(1,0,2).contiguous()
|
163 |
return example
|
164 |
|
165 |
-
|
166 |
|
167 |
try:
|
168 |
-
isinstance(
|
169 |
except:
|
170 |
raise Exception("quakeflow_nc is not an IterableDataset")
|
171 |
|
172 |
data_loader = DataLoader(
|
173 |
-
|
174 |
-
|
175 |
-
collate_fn=None,
|
176 |
num_workers=num_workers,
|
177 |
)
|
178 |
|
179 |
-
for batch in
|
180 |
print("\nIterable test\n")
|
181 |
print(batch.keys())
|
182 |
for key in batch.keys():
|
|
|
84 |
from torch.utils.data import Dataset, IterableDataset, DataLoader
|
85 |
from datasets import load_dataset
|
86 |
```
|
87 |
+
We have 2 configurations for the dataset: `NCEDC` and `NCEDC_full_size`. They all return event-based samples one by one. But `NCEDC` returns samples with 10 stations each, while `NCEDC_full_size` return samples with stations same as the original data.
|
88 |
+
|
89 |
+
The sample of `NCEDC` is a dictionary with the following keys:
|
90 |
+
- `waveform`: the waveform with shape `(3, nt, n_sta)`, the first dimension is 3 components, the second dimension is the number of time samples, the third dimension is the number of stations
|
91 |
+
- `phase_pick`: the probability of the phase pick with shape `(3, nt, n_sta)`, the first dimension is noise, P and S
|
92 |
+
- `event_location`: the event location with shape `(4,)`, including latitude, longitude, depth and time
|
93 |
+
- `station_location`: the station location with shape `(n_sta, 3)`, the first dimension is latitude, longitude and depth
|
94 |
+
|
95 |
+
Because Huggingface datasets only support dynamic size on first dimension, so the sample of `NCEDC_full_size` is a dictionary with the following keys:
|
96 |
+
- `waveform`: the waveform with shape `(n_sta, 3, nt)`,
|
97 |
+
- `phase_pick`: the probability of the phase pick with shape `(n_sta, 3, nt)`
|
98 |
+
- `event_location`: the event location with shape `(4,)`
|
99 |
+
- `station_location`: the station location with shape `(n_sta, 3)`, the first dimension is latitude, longitude and depth
|
100 |
+
|
101 |
+
The default configuration is `NCEDC`. You can specify the configuration by argument `name`. For example:
|
102 |
```python
|
103 |
# load dataset
|
104 |
# ATTENTION: Streaming(Iterable Dataset) is difficult to support because of the feature of HDF5
|
|
|
110 |
# or
|
111 |
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="NCEDC", split="train")
|
112 |
|
113 |
+
# to load "NCEDC_full_size"
|
114 |
+
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="NCEDC_full_size", split="train")
|
115 |
```
|
116 |
|
117 |
If you want to use the first several shards of the dataset, you can download the script `quakeflow_nc.py` and change the code as below:
|
|
|
159 |
break
|
160 |
```
|
161 |
|
162 |
+
#### Usage for `NCEDC_full_size`
|
163 |
+
|
164 |
+
Then you can change the dataset into PyTorch format dataset, and view the first sample (Don't forget to reorder the keys):
|
165 |
```python
|
166 |
+
quakeflow_nc = datasets.load_dataset("AI4EPS/quakeflow_nc", split="train", name="NCEDC_full_size")
|
167 |
|
168 |
# for PyTorch DataLoader, we need to divide the dataset into several shards
|
169 |
num_workers=4
|
170 |
+
quakeflow_nc = quakeflow_nc.to_iterable_dataset(num_shards=num_workers)
|
171 |
# because add examples formatting to get tensors when using the "torch" format
|
172 |
# has not been implemented yet, we need to manually add the formatting
|
173 |
+
quakeflow_nc = quakeflow_nc.map(lambda x: {key: torch.from_numpy(np.array(value, dtype=np.float32)) for key, value in x.items()})
|
174 |
def reorder_keys(example):
|
175 |
+
example["waveform"] = example["waveform"].permute(1,2,0).contiguous()
|
176 |
+
example["phase_pick"] = example["phase_pick"].permute(1,2,0).contiguous()
|
|
|
177 |
return example
|
178 |
|
179 |
+
quakeflow_nc = quakeflow_nc.map(reorder_keys)
|
180 |
|
181 |
try:
|
182 |
+
isinstance(quakeflow_nc, torch.utils.data.IterableDataset)
|
183 |
except:
|
184 |
raise Exception("quakeflow_nc is not an IterableDataset")
|
185 |
|
186 |
data_loader = DataLoader(
|
187 |
+
quakeflow_nc,
|
188 |
+
batch_size=1,
|
|
|
189 |
num_workers=num_workers,
|
190 |
)
|
191 |
|
192 |
+
for batch in quakeflow_nc:
|
193 |
print("\nIterable test\n")
|
194 |
print(batch.keys())
|
195 |
for key in batch.keys():
|
quakeflow_nc.py
CHANGED
@@ -17,16 +17,10 @@
|
|
17 |
"""QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format."""
|
18 |
|
19 |
|
20 |
-
import csv
|
21 |
-
import json
|
22 |
-
import os
|
23 |
import h5py
|
24 |
import numpy as np
|
25 |
import torch
|
26 |
-
import fsspec
|
27 |
-
from glob import glob
|
28 |
from typing import Dict, List, Optional, Tuple, Union
|
29 |
-
from collections import defaultdict
|
30 |
|
31 |
import datasets
|
32 |
|
@@ -60,7 +54,7 @@ _LICENSE = ""
|
|
60 |
_REPO = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/data"
|
61 |
_URLS = {
|
62 |
"NCEDC": [f"{_REPO}/ncedc_event_dataset_{i:03d}.h5" for i in range(37)],
|
63 |
-
"
|
64 |
}
|
65 |
|
66 |
class BatchBuilderConfig(datasets.BuilderConfig):
|
@@ -74,12 +68,13 @@ class BatchBuilderConfig(datasets.BuilderConfig):
|
|
74 |
super().__init__(**kwargs)
|
75 |
self.batch_size = batch_size
|
76 |
self.num_stations_list = num_stations_list
|
77 |
-
|
78 |
-
#num_stations_list: List=None
|
79 |
|
80 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
81 |
class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
82 |
"""QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format."""
|
|
|
|
|
83 |
|
84 |
degree2km = 111.32
|
85 |
nt = 8192
|
@@ -88,8 +83,6 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
88 |
sampling_rate=100.0
|
89 |
num_stations = 10
|
90 |
|
91 |
-
VERSION = datasets.Version("1.1.0")
|
92 |
-
|
93 |
# This is an example of a dataset with multiple configurations.
|
94 |
# If you don't want/need to define several sub-sets in your dataset,
|
95 |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
@@ -104,11 +97,11 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
104 |
|
105 |
# default config, you can change batch_size and num_stations_list when use `datasets.load_dataset`
|
106 |
BUILDER_CONFIGS = [
|
107 |
-
|
108 |
-
|
109 |
]
|
110 |
|
111 |
-
DEFAULT_CONFIG_NAME = "
|
112 |
|
113 |
def _info(self):
|
114 |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
@@ -121,13 +114,13 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
121 |
"station_location": datasets.Array2D(shape=(self.num_stations, 3), dtype="float32"),
|
122 |
})
|
123 |
|
124 |
-
elif self.config.name=="
|
125 |
features=datasets.Features(
|
126 |
{
|
127 |
-
"waveform": datasets.
|
128 |
-
"phase_pick": datasets.
|
129 |
-
"event_location": datasets.
|
130 |
-
"station_location": datasets.
|
131 |
}
|
132 |
)
|
133 |
|
@@ -166,8 +159,6 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
166 |
gen_kwargs={
|
167 |
"filepath": files,
|
168 |
"split": "train",
|
169 |
-
"batch_size": self.config.batch_size,
|
170 |
-
"num_stations_list": self.config.num_stations_list,
|
171 |
},
|
172 |
),
|
173 |
# datasets.SplitGenerator(
|
@@ -191,18 +182,10 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
191 |
|
192 |
|
193 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
194 |
-
def _generate_examples(self, filepath, split
|
195 |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
196 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
197 |
-
|
198 |
-
|
199 |
-
num_stations_list = np.array(num_stations_list)
|
200 |
-
if self.config.name=="NCEDC_Batch":
|
201 |
-
waveform_buffer_per_group = defaultdict(list)
|
202 |
-
phase_pick_buffer_per_group = defaultdict(list)
|
203 |
-
event_location_buffer_per_group = defaultdict(list)
|
204 |
-
station_location_buffer_per_group = defaultdict(list)
|
205 |
-
|
206 |
for file in filepath:
|
207 |
with h5py.File(file, "r") as fp:
|
208 |
# for event_id in sorted(list(fp.keys())):
|
@@ -210,15 +193,11 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
210 |
event = fp[event_id]
|
211 |
station_ids = list(event.keys())
|
212 |
|
213 |
-
if
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
elif self.config.name=="NCEDC_Batch":
|
219 |
-
num_stations=num_stations_list[num_stations_list<=len(station_ids)][-1]
|
220 |
-
|
221 |
-
station_ids = np.random.choice(station_ids, num_stations, replace=False)
|
222 |
|
223 |
waveforms = np.zeros([3, self.nt, len(station_ids)])
|
224 |
phase_pick = np.zeros_like(waveforms)
|
@@ -240,49 +219,21 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
240 |
waveforms = (waveforms - np.mean(waveforms, axis=1, keepdims=True)) / std
|
241 |
waveforms = waveforms.astype(np.float32)
|
242 |
|
243 |
-
if
|
244 |
yield event_id, {
|
245 |
"waveform": torch.from_numpy(waveforms).float(),
|
246 |
"phase_pick": torch.from_numpy(phase_pick).float(),
|
247 |
-
"event_location": event_location,
|
248 |
-
"station_location": station_location,
|
249 |
}
|
250 |
-
elif self.config.name=="
|
251 |
-
|
252 |
-
waveform_buffer_per_group[num_stations].append(waveforms)
|
253 |
-
phase_pick_buffer_per_group[num_stations].append(phase_pick)
|
254 |
-
event_location_buffer_per_group[num_stations].append(event_location)
|
255 |
-
station_location_buffer_per_group[num_stations].append(station_location)
|
256 |
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
}
|
264 |
-
del waveform_buffer_per_group[num_stations]
|
265 |
-
del phase_pick_buffer_per_group[num_stations]
|
266 |
-
del event_location_buffer_per_group[num_stations]
|
267 |
-
del station_location_buffer_per_group[num_stations]
|
268 |
-
num_batches += 1
|
269 |
-
assert len(waveform_buffer_per_group[num_stations])<batch_size, "batch size is not correct"
|
270 |
-
|
271 |
-
'''
|
272 |
-
# drop_last=False
|
273 |
-
if self.config.name=="NCEDC_Batch":
|
274 |
-
for num_stations in waveform_buffer_per_group:
|
275 |
-
yield event_id, {
|
276 |
-
"waveform": torch.from_numpy(np.stack(waveform_buffer_per_group, axis=0)).float(),
|
277 |
-
"phase_pick": torch.from_numpy(np.stack(phase_pick_buffer_per_group, axis=0)).float(),
|
278 |
-
"event_location": np.stack(event_location_buffer_per_group, axis=0),
|
279 |
-
"station_location": np.stack(station_location_buffer_per_group, axis=0),
|
280 |
-
}
|
281 |
-
del waveform_buffer_per_group[num_stations]
|
282 |
-
del phase_pick_buffer_per_group[num_stations]
|
283 |
-
del event_location_buffer_per_group[num_stations]
|
284 |
-
del station_location_buffer_per_group[num_stations]
|
285 |
-
'''
|
286 |
|
287 |
|
288 |
def generate_label(phase_list, label_width=[150, 150], nt=8192):
|
|
|
17 |
"""QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format."""
|
18 |
|
19 |
|
|
|
|
|
|
|
20 |
import h5py
|
21 |
import numpy as np
|
22 |
import torch
|
|
|
|
|
23 |
from typing import Dict, List, Optional, Tuple, Union
|
|
|
24 |
|
25 |
import datasets
|
26 |
|
|
|
54 |
_REPO = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/data"
|
55 |
_URLS = {
|
56 |
"NCEDC": [f"{_REPO}/ncedc_event_dataset_{i:03d}.h5" for i in range(37)],
|
57 |
+
"NCEDC_full_size": [f"{_REPO}/ncedc_event_dataset_{i:03d}.h5" for i in range(37)],
|
58 |
}
|
59 |
|
60 |
class BatchBuilderConfig(datasets.BuilderConfig):
|
|
|
68 |
super().__init__(**kwargs)
|
69 |
self.batch_size = batch_size
|
70 |
self.num_stations_list = num_stations_list
|
71 |
+
|
|
|
72 |
|
73 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
74 |
class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
75 |
"""QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format."""
|
76 |
+
|
77 |
+
VERSION = datasets.Version("1.1.0")
|
78 |
|
79 |
degree2km = 111.32
|
80 |
nt = 8192
|
|
|
83 |
sampling_rate=100.0
|
84 |
num_stations = 10
|
85 |
|
|
|
|
|
86 |
# This is an example of a dataset with multiple configurations.
|
87 |
# If you don't want/need to define several sub-sets in your dataset,
|
88 |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
|
|
97 |
|
98 |
# default config, you can change batch_size and num_stations_list when use `datasets.load_dataset`
|
99 |
BUILDER_CONFIGS = [
|
100 |
+
datasets.BuilderConfig(name="NCEDC", version=VERSION, description="yield event-based samples one by one, the number of sample stations is fixed(default: 10)"),
|
101 |
+
datasets.BuilderConfig(name="NCEDC_full_size", version=VERSION, description="yield event-based samples one by one, the number of sample stations is the same as the number of stations in the event"),
|
102 |
]
|
103 |
|
104 |
+
DEFAULT_CONFIG_NAME = "NCEDC" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
105 |
|
106 |
def _info(self):
|
107 |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
|
|
114 |
"station_location": datasets.Array2D(shape=(self.num_stations, 3), dtype="float32"),
|
115 |
})
|
116 |
|
117 |
+
elif self.config.name=="NCEDC_full_size":
|
118 |
features=datasets.Features(
|
119 |
{
|
120 |
+
"waveform": datasets.Array3D(shape=(None, 3, self.nt), dtype='float32'),
|
121 |
+
"phase_pick": datasets.Array3D(shape=(None, 3, self.nt), dtype='float32'),
|
122 |
+
"event_location": datasets.Sequence(datasets.Value("float32")),
|
123 |
+
"station_location": datasets.Array2D(shape=(None, 3), dtype="float32"),
|
124 |
}
|
125 |
)
|
126 |
|
|
|
159 |
gen_kwargs={
|
160 |
"filepath": files,
|
161 |
"split": "train",
|
|
|
|
|
162 |
},
|
163 |
),
|
164 |
# datasets.SplitGenerator(
|
|
|
182 |
|
183 |
|
184 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
185 |
+
def _generate_examples(self, filepath, split):
|
186 |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
187 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
188 |
+
num_stations = self.num_stations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
for file in filepath:
|
190 |
with h5py.File(file, "r") as fp:
|
191 |
# for event_id in sorted(list(fp.keys())):
|
|
|
193 |
event = fp[event_id]
|
194 |
station_ids = list(event.keys())
|
195 |
|
196 |
+
if self.config.name=="NCEDC":
|
197 |
+
if len(station_ids) < num_stations:
|
198 |
+
continue
|
199 |
+
else:
|
200 |
+
station_ids = np.random.choice(station_ids, num_stations, replace=False)
|
|
|
|
|
|
|
|
|
201 |
|
202 |
waveforms = np.zeros([3, self.nt, len(station_ids)])
|
203 |
phase_pick = np.zeros_like(waveforms)
|
|
|
219 |
waveforms = (waveforms - np.mean(waveforms, axis=1, keepdims=True)) / std
|
220 |
waveforms = waveforms.astype(np.float32)
|
221 |
|
222 |
+
if self.config.name=="NCEDC":
|
223 |
yield event_id, {
|
224 |
"waveform": torch.from_numpy(waveforms).float(),
|
225 |
"phase_pick": torch.from_numpy(phase_pick).float(),
|
226 |
+
"event_location": torch.from_numpy(np.array(event_location)).float(),
|
227 |
+
"station_location": torch.from_numpy(np.array(station_location)).float(),
|
228 |
}
|
229 |
+
elif self.config.name=="NCEDC_full_size":
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
+
yield event_id, {
|
232 |
+
"waveform": torch.from_numpy(waveforms).float().permute(2,0,1),
|
233 |
+
"phase_pick": torch.from_numpy(phase_pick).float().permute(2,0,1),
|
234 |
+
"event_location": torch.from_numpy(np.array(event_location)).float(),
|
235 |
+
"station_location": torch.from_numpy(np.array(station_location)).float(),
|
236 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
|
239 |
def generate_label(phase_list, label_width=[150, 150], nt=8192):
|