Datasets:

DOI:
License:
zhuwq0 commited on
Commit
0151d59
1 Parent(s): ed36017

change name

Browse files
dataset_script.py DELETED
@@ -1,161 +0,0 @@
1
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # TODO: Address all TODOs and remove all explanatory comments
15
- """TODO: Add a description here."""
16
-
17
-
18
- import csv
19
- import json
20
- import os
21
- import h5py
22
- from glob import glob
23
-
24
- import datasets
25
-
26
-
27
- # TODO: Add BibTeX citation
28
- # Find for instance the citation on arxiv or on the dataset repo/website
29
- _CITATION = """\
30
- @InProceedings{huggingface:dataset,
31
- title = {A great new dataset},
32
- author={huggingface, Inc.
33
- },
34
- year={2020}
35
- }
36
- """
37
-
38
- # TODO: Add description of the dataset here
39
- # You can copy an official description
40
- _DESCRIPTION = """\
41
- This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
42
- """
43
-
44
- # TODO: Add a link to an official homepage for the dataset here
45
- _HOMEPAGE = ""
46
-
47
- # TODO: Add the licence for the dataset here if you can find it
48
- _LICENSE = ""
49
-
50
- # TODO: Add link to the official dataset URLs here
51
- # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
52
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
53
- _REPO = "https://huggingface.co/datasets/AI4EPS/QuakeFlow_NC/resolve/main/data"
54
- _URLS = {
55
- "NCEDC": [f"{_REPO}/ncedc_event_dataset_{i:03d}.h5" for i in range(36)]
56
- }
57
-
58
-
59
- # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
60
- class NewDataset(datasets.GeneratorBasedBuilder):
61
- """TODO: Short description of my dataset."""
62
-
63
- VERSION = datasets.Version("1.1.0")
64
-
65
- # This is an example of a dataset with multiple configurations.
66
- # If you don't want/need to define several sub-sets in your dataset,
67
- # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
68
-
69
- # If you need to make complex sub-parts in the datasets with configurable options
70
- # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
71
- # BUILDER_CONFIG_CLASS = MyBuilderConfig
72
-
73
- # You will be able to load one or the other configurations in the following list with
74
- # data = datasets.load_dataset('my_dataset', 'first_domain')
75
- # data = datasets.load_dataset('my_dataset', 'second_domain')
76
- BUILDER_CONFIGS = [
77
- datasets.BuilderConfig(name="NCEDC", version=VERSION, description="This part of my dataset covers a first domain"),
78
- ]
79
-
80
- DEFAULT_CONFIG_NAME = "NCEDC" # It's not mandatory to have a default configuration. Just use one if it make sense.
81
-
82
- def _info(self):
83
- # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
84
- features=datasets.Features(
85
- {
86
- "event_id": datasets.Value("string"),
87
- "station_id": datasets.Value("string"),
88
- "waveform": datasets.Array2D(shape=(3, 1200), dtype="float32"),
89
- }
90
- )
91
- return datasets.DatasetInfo(
92
- # This is the description that will appear on the datasets page.
93
- description=_DESCRIPTION,
94
- # This defines the different columns of the dataset and their types
95
- features=features, # Here we define them above because they are different between the two configurations
96
- # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
97
- # specify them. They'll be used if as_supervised=True in builder.as_dataset.
98
- # supervised_keys=("sentence", "label"),
99
- # Homepage of the dataset for documentation
100
- homepage=_HOMEPAGE,
101
- # License for the dataset if available
102
- license=_LICENSE,
103
- # Citation for the dataset
104
- citation=_CITATION,
105
- )
106
-
107
- def _split_generators(self, dl_manager):
108
- # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
109
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
110
-
111
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
112
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
113
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
114
- urls = _URLS[self.config.name]
115
- # files = dl_manager.download(urls)
116
- files = dl_manager.download_and_extract(urls)
117
-
118
- return [
119
- datasets.SplitGenerator(
120
- name=datasets.Split.TRAIN,
121
- # These kwargs will be passed to _generate_examples
122
- gen_kwargs={
123
- "filepath": files,
124
- "split": "train",
125
- },
126
- ),
127
- # datasets.SplitGenerator(
128
- # name=datasets.Split.VALIDATION,
129
- # # These kwargs will be passed to _generate_examples
130
- # gen_kwargs={
131
- # "filepath": os.path.join(data_dir, "dev.jsonl"),
132
- # "split": "dev",
133
- # },
134
- # ),
135
- # datasets.SplitGenerator(
136
- # name=datasets.Split.TEST,
137
- # # These kwargs will be passed to _generate_examples
138
- # gen_kwargs={
139
- # "filepath": os.path.join(data_dir, "test.jsonl"),
140
- # "split": "test"
141
- # },
142
- # ),
143
- ]
144
-
145
- # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
146
- def _generate_examples(self, filepath, split):
147
- # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
148
- # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
149
-
150
- for file in filepath:
151
- with h5py.File(file, "r") as fp:
152
- for event_id in sorted(list(fp.keys())):
153
- event = fp[event_id]
154
- for station_id in sorted(list(event.keys())):
155
- station = event[station_id]
156
- # print(f"{event_id = } {station_id = }")
157
- yield event_id + "_" + station_id, {
158
- "event_id": event_id,
159
- "station_id": station_id,
160
- "waveform": station[:],
161
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
QuakeFlow_NC.py → quakeflow_nc.py RENAMED
File without changes