|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format.""" |
|
|
|
|
|
from typing import Dict, List, Optional, Tuple, Union |
|
|
|
import datasets |
|
import fsspec |
|
import h5py |
|
import numpy as np |
|
import torch |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {NCEDC dataset for QuakeFlow}, |
|
author={Zhu et al.}, |
|
year={2023} |
|
} |
|
""" |
|
|
|
|
|
|
|
_DESCRIPTION = """\ |
|
A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format. |
|
""" |
|
|
|
|
|
_HOMEPAGE = "" |
|
|
|
|
|
_LICENSE = "" |
|
|
|
|
|
|
|
|
|
_REPO = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/waveform_h5" |
|
_FILES = [ |
|
"1987.h5", |
|
"1988.h5", |
|
"1989.h5", |
|
"1990.h5", |
|
"1991.h5", |
|
"1992.h5", |
|
"1993.h5", |
|
"1994.h5", |
|
"1995.h5", |
|
"1996.h5", |
|
"1997.h5", |
|
"1998.h5", |
|
"1999.h5", |
|
"2000.h5", |
|
"2001.h5", |
|
"2002.h5", |
|
"2003.h5", |
|
"2004.h5", |
|
"2005.h5", |
|
"2006.h5", |
|
"2007.h5", |
|
"2008.h5", |
|
"2009.h5", |
|
"2010.h5", |
|
"2011.h5", |
|
"2012.h5", |
|
"2013.h5", |
|
"2014.h5", |
|
"2015.h5", |
|
"2016.h5", |
|
"2017.h5", |
|
"2018.h5", |
|
"2019.h5", |
|
"2020.h5", |
|
"2021.h5", |
|
"2022.h5", |
|
"2023.h5", |
|
] |
|
_URLS = { |
|
"station": [f"{_REPO}/{x}" for x in _FILES], |
|
"event": [f"{_REPO}/{x}" for x in _FILES], |
|
"station_train": [f"{_REPO}/{x}" for x in _FILES[:-1]], |
|
"event_train": [f"{_REPO}/{x}" for x in _FILES[:-1]], |
|
"station_test": [f"{_REPO}/{x}" for x in _FILES[-1:]], |
|
"event_test": [f"{_REPO}/{x}" for x in _FILES[-1:]], |
|
} |
|
|
|
|
|
class BatchBuilderConfig(datasets.BuilderConfig): |
|
""" |
|
yield a batch of event-based sample, so the number of sample stations can vary among batches |
|
Batch Config for QuakeFlow_NC |
|
:param batch_size: number of samples in a batch |
|
:param num_stations_list: possible number of stations in a batch |
|
""" |
|
|
|
def __init__(self, batch_size: int, num_stations_list: List, **kwargs): |
|
super().__init__(**kwargs) |
|
self.batch_size = batch_size |
|
self.num_stations_list = num_stations_list |
|
|
|
|
|
|
|
class QuakeFlow_NC(datasets.GeneratorBasedBuilder): |
|
"""QuakeFlow_NC: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
degree2km = 111.32 |
|
nt = 8192 |
|
feature_nt = 512 |
|
feature_scale = int(nt / feature_nt) |
|
sampling_rate = 100.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="station", version=VERSION, description="yield station-based samples one by one of whole dataset" |
|
), |
|
datasets.BuilderConfig( |
|
name="event", version=VERSION, description="yield event-based samples one by one of whole dataset" |
|
), |
|
datasets.BuilderConfig( |
|
name="station_train", |
|
version=VERSION, |
|
description="yield station-based samples one by one of training dataset", |
|
), |
|
datasets.BuilderConfig( |
|
name="event_train", version=VERSION, description="yield event-based samples one by one of training dataset" |
|
), |
|
datasets.BuilderConfig( |
|
name="station_test", version=VERSION, description="yield station-based samples one by one of test dataset" |
|
), |
|
datasets.BuilderConfig( |
|
name="event_test", version=VERSION, description="yield event-based samples one by one of test dataset" |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = ( |
|
"station_test" |
|
) |
|
|
|
def _info(self): |
|
|
|
if ( |
|
(self.config.name == "station") |
|
or (self.config.name == "station_train") |
|
or (self.config.name == "station_test") |
|
): |
|
features=datasets.Features( |
|
{ |
|
"data": datasets.Array2D(shape=(3, self.nt), dtype='float32'), |
|
"phase_pick": datasets.Array2D(shape=(3, self.nt), dtype='float32'), |
|
"event_location": datasets.Sequence(datasets.Value("float32")), |
|
"station_location": datasets.Sequence(datasets.Value("float32")), |
|
}) |
|
|
|
elif ( |
|
(self.config.name == "event") |
|
or (self.config.name == "event_train") |
|
or (self.config.name == "event_test") |
|
): |
|
features=datasets.Features( |
|
{ |
|
"data": datasets.Array3D(shape=(None, 3, self.nt), dtype='float32'), |
|
"phase_pick": datasets.Array3D(shape=(None, 3, self.nt), dtype='float32'), |
|
"event_center" : datasets.Array2D(shape=(None, self.feature_nt), dtype='float32'), |
|
"event_location": datasets.Array3D(shape=(None, 4, self.feature_nt), dtype='float32'), |
|
"event_location_mask": datasets.Array2D(shape=(None, self.feature_nt), dtype='float32'), |
|
"station_location": datasets.Array2D(shape=(None, 3), dtype="float32"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
|
|
|
|
|
|
|
|
urls = _URLS[self.config.name] |
|
|
|
files = dl_manager.download_and_extract(urls) |
|
print(files) |
|
|
|
if self.config.name == "station" or self.config.name == "event": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": files[:-1], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": files[-1:], "split": "test"}, |
|
), |
|
] |
|
elif self.config.name == "station_train" or self.config.name == "event_train": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": files, |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
elif self.config.name == "station_test" or self.config.name == "event_test": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": files, "split": "test"}, |
|
), |
|
] |
|
else: |
|
raise ValueError("config.name is not in BUILDER_CONFIGS") |
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
|
|
|
|
|
|
for file in filepath: |
|
with fsspec.open(file, "rb") as fs: |
|
with h5py.File(fs, "r") as fp: |
|
|
|
event_ids = list(fp.keys()) |
|
for event_id in event_ids: |
|
event = fp[event_id] |
|
station_ids = list(event.keys()) |
|
if ( |
|
(self.config.name == "station") |
|
or (self.config.name == "station_train") |
|
or (self.config.name == "station_test") |
|
): |
|
waveforms = np.zeros([3, self.nt], dtype="float32") |
|
phase_pick = np.zeros_like(waveforms) |
|
attrs = event.attrs |
|
event_location = [ |
|
attrs["longitude"], |
|
attrs["latitude"], |
|
attrs["depth_km"], |
|
attrs["event_time_index"], |
|
] |
|
|
|
for i, sta_id in enumerate(station_ids): |
|
waveforms[:, : self.nt] = event[sta_id][:, :self.nt] |
|
|
|
attrs = event[sta_id].attrs |
|
p_picks = attrs["phase_index"][attrs["phase_type"] == "P"] |
|
s_picks = attrs["phase_index"][attrs["phase_type"] == "S"] |
|
phase_pick[:, :self.nt] = generate_label([p_picks, s_picks], nt=self.nt) |
|
station_location = [attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3] |
|
|
|
yield f"{event_id}/{sta_id}", { |
|
"data": torch.from_numpy(waveforms).float(), |
|
"phase_pick": torch.from_numpy(phase_pick).float(), |
|
"event_location": torch.from_numpy(np.array(event_location)).float(), |
|
"station_location": torch.from_numpy(np.array(station_location)).float(), |
|
} |
|
|
|
|
|
elif ( |
|
(self.config.name == "event") |
|
or (self.config.name == "event_train") |
|
or (self.config.name == "event_test") |
|
): |
|
event_attrs = event.attrs |
|
|
|
|
|
is_sick = False |
|
for sta_id in station_ids: |
|
attrs = event[sta_id].attrs |
|
if attrs["phase_index"][attrs["phase_type"] == "P"] == attrs["phase_index"][attrs["phase_type"] == "S"]: |
|
is_sick = True |
|
break |
|
if is_sick: |
|
continue |
|
|
|
waveforms = np.zeros([len(station_ids), 3, self.nt], dtype="float32") |
|
phase_pick = np.zeros_like(waveforms) |
|
event_center = np.zeros([len(station_ids), self.nt]) |
|
event_location = np.zeros([len(station_ids), 4, self.nt]) |
|
event_location_mask = np.zeros([len(station_ids), self.nt]) |
|
station_location = np.zeros([len(station_ids), 3]) |
|
|
|
for i, sta_id in enumerate(station_ids): |
|
|
|
waveforms[i, :, :] = event[sta_id][:, :self.nt] |
|
attrs = event[sta_id].attrs |
|
p_picks = attrs["phase_index"][attrs["phase_type"] == "P"] |
|
s_picks = attrs["phase_index"][attrs["phase_type"] == "S"] |
|
phase_pick[i, :, :] = generate_label([p_picks, s_picks], nt=self.nt) |
|
|
|
|
|
|
|
|
|
c0 = ((p_picks) + (s_picks)) / 2.0 |
|
c0_width = ((s_picks - p_picks) * self.sampling_rate / 200.0).max() if p_picks!=s_picks else 50 |
|
dx = round( |
|
(event_attrs["longitude"] - attrs["longitude"]) |
|
* np.cos(np.radians(event_attrs["latitude"])) |
|
* self.degree2km, |
|
2, |
|
) |
|
dy = round( |
|
(event_attrs["latitude"] - attrs["latitude"]) |
|
* self.degree2km, |
|
2, |
|
) |
|
dz = round( |
|
event_attrs["depth_km"] + attrs["elevation_m"] / 1e3, |
|
2, |
|
) |
|
|
|
event_center[i, :] = generate_label( |
|
[ |
|
|
|
c0, |
|
], |
|
label_width=[ |
|
c0_width, |
|
], |
|
|
|
|
|
|
|
|
|
nt=self.nt, |
|
)[1, :] |
|
mask = event_center[i, :] >= 0.5 |
|
event_location[i, 0, :] = ( |
|
np.arange(self.nt) - event_attrs["event_time_index"] |
|
) / self.sampling_rate |
|
|
|
|
|
event_location[i][1:, mask] = np.array([dx, dy, dz])[:, np.newaxis] |
|
event_location_mask[i, :] = mask |
|
|
|
|
|
station_location[i, 0] = round( |
|
attrs["longitude"] |
|
* np.cos(np.radians(attrs["latitude"])) |
|
* self.degree2km, |
|
2, |
|
) |
|
station_location[i, 1] = round(attrs["latitude"] * self.degree2km, 2) |
|
station_location[i, 2] = round(-attrs["elevation_m"]/1e3, 2) |
|
|
|
std = np.std(waveforms, axis=1, keepdims=True) |
|
std[std == 0] = 1.0 |
|
waveforms = (waveforms - np.mean(waveforms, axis=1, keepdims=True)) / std |
|
waveforms = waveforms.astype(np.float32) |
|
|
|
yield event_id, { |
|
"data": torch.from_numpy(waveforms).float(), |
|
"phase_pick": torch.from_numpy(phase_pick).float(), |
|
"event_center": torch.from_numpy(event_center[:, ::self.feature_scale]).float(), |
|
"event_location": torch.from_numpy(event_location[:, :, ::self.feature_scale]).float(), |
|
"event_location_mask": torch.from_numpy(event_location_mask[:, ::self.feature_scale]).float(), |
|
"station_location": torch.from_numpy(station_location).float(), |
|
} |
|
|
|
|
|
def generate_label(phase_list, label_width=[150, 150], nt=8192): |
|
target = np.zeros([len(phase_list) + 1, nt], dtype=np.float32) |
|
|
|
for i, (picks, w) in enumerate(zip(phase_list, label_width)): |
|
for phase_time in picks: |
|
t = np.arange(nt) - phase_time |
|
gaussian = np.exp(-(t**2) / (2 * (w / 6) ** 2)) |
|
gaussian[gaussian < 0.1] = 0.0 |
|
target[i + 1, :] += gaussian |
|
|
|
target[0:1, :] = np.maximum(0, 1 - np.sum(target[1:, :], axis=0, keepdims=True)) |
|
|
|
return target |
|
|