|
""" |
|
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset) |
|
author: lzhbrian (https://lzhbrian.me) |
|
link: https://gist.github.com/lzhbrian/bde87ab23b499dd02ba4f588258f57d5 |
|
date: 2020.1.5 |
|
note: code is heavily borrowed from |
|
https://github.com/NVlabs/ffhq-dataset |
|
http://dlib.net/face_landmark_detection.py.html |
|
requirements: |
|
conda install Pillow numpy scipy |
|
conda install -c conda-forge dlib |
|
# download face landmark model from: |
|
# http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 |
|
""" |
|
|
|
import cv2 |
|
import dlib |
|
import glob |
|
import numpy as np |
|
import os |
|
import PIL |
|
import PIL.Image |
|
import scipy |
|
import scipy.ndimage |
|
import sys |
|
import argparse |
|
|
|
|
|
predictor = dlib.shape_predictor('weights/dlib/shape_predictor_68_face_landmarks-fbdc2cb8.dat') |
|
|
|
|
|
def get_landmark(filepath, only_keep_largest=True): |
|
"""get landmark with dlib |
|
:return: np.array shape=(68, 2) |
|
""" |
|
detector = dlib.get_frontal_face_detector() |
|
|
|
img = dlib.load_rgb_image(filepath) |
|
dets = detector(img, 1) |
|
|
|
|
|
print("Number of faces detected: {}".format(len(dets))) |
|
if only_keep_largest: |
|
print('Detect several faces and only keep the largest.') |
|
face_areas = [] |
|
for k, d in enumerate(dets): |
|
face_area = (d.right() - d.left()) * (d.bottom() - d.top()) |
|
face_areas.append(face_area) |
|
|
|
largest_idx = face_areas.index(max(face_areas)) |
|
d = dets[largest_idx] |
|
shape = predictor(img, d) |
|
print("Part 0: {}, Part 1: {} ...".format( |
|
shape.part(0), shape.part(1))) |
|
else: |
|
for k, d in enumerate(dets): |
|
print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format( |
|
k, d.left(), d.top(), d.right(), d.bottom())) |
|
|
|
shape = predictor(img, d) |
|
print("Part 0: {}, Part 1: {} ...".format( |
|
shape.part(0), shape.part(1))) |
|
|
|
t = list(shape.parts()) |
|
a = [] |
|
for tt in t: |
|
a.append([tt.x, tt.y]) |
|
lm = np.array(a) |
|
|
|
return lm |
|
|
|
def align_face(filepath, out_path): |
|
""" |
|
:param filepath: str |
|
:return: PIL Image |
|
""" |
|
try: |
|
lm = get_landmark(filepath) |
|
except: |
|
print('No landmark ...') |
|
return |
|
|
|
lm_chin = lm[0:17] |
|
lm_eyebrow_left = lm[17:22] |
|
lm_eyebrow_right = lm[22:27] |
|
lm_nose = lm[27:31] |
|
lm_nostrils = lm[31:36] |
|
lm_eye_left = lm[36:42] |
|
lm_eye_right = lm[42:48] |
|
lm_mouth_outer = lm[48:60] |
|
lm_mouth_inner = lm[60:68] |
|
|
|
|
|
eye_left = np.mean(lm_eye_left, axis=0) |
|
eye_right = np.mean(lm_eye_right, axis=0) |
|
eye_avg = (eye_left + eye_right) * 0.5 |
|
eye_to_eye = eye_right - eye_left |
|
mouth_left = lm_mouth_outer[0] |
|
mouth_right = lm_mouth_outer[6] |
|
mouth_avg = (mouth_left + mouth_right) * 0.5 |
|
eye_to_mouth = mouth_avg - eye_avg |
|
|
|
|
|
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] |
|
x /= np.hypot(*x) |
|
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) |
|
y = np.flipud(x) * [-1, 1] |
|
c = eye_avg + eye_to_mouth * 0.1 |
|
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) |
|
qsize = np.hypot(*x) * 2 |
|
|
|
|
|
img = PIL.Image.open(filepath) |
|
|
|
output_size = 512 |
|
transform_size = 4096 |
|
enable_padding = False |
|
|
|
|
|
shrink = int(np.floor(qsize / output_size * 0.5)) |
|
if shrink > 1: |
|
rsize = (int(np.rint(float(img.size[0]) / shrink)), |
|
int(np.rint(float(img.size[1]) / shrink))) |
|
img = img.resize(rsize, PIL.Image.ANTIALIAS) |
|
quad /= shrink |
|
qsize /= shrink |
|
|
|
|
|
border = max(int(np.rint(qsize * 0.1)), 3) |
|
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), |
|
int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1])))) |
|
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), |
|
min(crop[2] + border, |
|
img.size[0]), min(crop[3] + border, img.size[1])) |
|
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: |
|
img = img.crop(crop) |
|
quad -= crop[0:2] |
|
|
|
|
|
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), |
|
int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1])))) |
|
pad = (max(-pad[0] + border, |
|
0), max(-pad[1] + border, |
|
0), max(pad[2] - img.size[0] + border, |
|
0), max(pad[3] - img.size[1] + border, 0)) |
|
if enable_padding and max(pad) > border - 4: |
|
pad = np.maximum(pad, int(np.rint(qsize * 0.3))) |
|
img = np.pad( |
|
np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), |
|
'reflect') |
|
h, w, _ = img.shape |
|
y, x, _ = np.ogrid[:h, :w, :1] |
|
mask = np.maximum( |
|
1.0 - |
|
np.minimum(np.float32(x) / pad[0], |
|
np.float32(w - 1 - x) / pad[2]), 1.0 - |
|
np.minimum(np.float32(y) / pad[1], |
|
np.float32(h - 1 - y) / pad[3])) |
|
blur = qsize * 0.02 |
|
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - |
|
img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) |
|
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) |
|
img = PIL.Image.fromarray( |
|
np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') |
|
quad += pad[:2] |
|
|
|
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, |
|
(quad + 0.5).flatten(), PIL.Image.BILINEAR) |
|
|
|
if output_size < transform_size: |
|
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) |
|
|
|
|
|
print('saveing: ', out_path) |
|
img.save(out_path) |
|
|
|
return img, np.max(quad[:, 0]) - np.min(quad[:, 0]) |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--in_dir', type=str, default='./inputs/whole_imgs') |
|
parser.add_argument('--out_dir', type=str, default='./inputs/cropped_faces') |
|
args = parser.parse_args() |
|
|
|
img_list = sorted(glob.glob(f'{args.in_dir}/*.png')) |
|
img_list = sorted(img_list) |
|
|
|
for in_path in img_list: |
|
out_path = os.path.join(args.out_dir, in_path.split("/")[-1]) |
|
out_path = out_path.replace('.jpg', '.png') |
|
size_ = align_face(in_path, out_path) |