|
import math |
|
import numpy as np |
|
import torch |
|
|
|
|
|
def cubic(x): |
|
"""cubic function used for calculate_weights_indices.""" |
|
absx = torch.abs(x) |
|
absx2 = absx**2 |
|
absx3 = absx**3 |
|
return (1.5 * absx3 - 2.5 * absx2 + 1) * ( |
|
(absx <= 1).type_as(absx)) + (-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2) * (((absx > 1) * |
|
(absx <= 2)).type_as(absx)) |
|
|
|
|
|
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): |
|
"""Calculate weights and indices, used for imresize function. |
|
|
|
Args: |
|
in_length (int): Input length. |
|
out_length (int): Output length. |
|
scale (float): Scale factor. |
|
kernel_width (int): Kernel width. |
|
antialisaing (bool): Whether to apply anti-aliasing when downsampling. |
|
""" |
|
|
|
if (scale < 1) and antialiasing: |
|
|
|
|
|
kernel_width = kernel_width / scale |
|
|
|
|
|
x = torch.linspace(1, out_length, out_length) |
|
|
|
|
|
|
|
|
|
u = x / scale + 0.5 * (1 - 1 / scale) |
|
|
|
|
|
left = torch.floor(u - kernel_width / 2) |
|
|
|
|
|
|
|
|
|
|
|
p = math.ceil(kernel_width) + 2 |
|
|
|
|
|
|
|
indices = left.view(out_length, 1).expand(out_length, p) + torch.linspace(0, p - 1, p).view(1, p).expand( |
|
out_length, p) |
|
|
|
|
|
|
|
distance_to_center = u.view(out_length, 1).expand(out_length, p) - indices |
|
|
|
|
|
if (scale < 1) and antialiasing: |
|
weights = scale * cubic(distance_to_center * scale) |
|
else: |
|
weights = cubic(distance_to_center) |
|
|
|
|
|
weights_sum = torch.sum(weights, 1).view(out_length, 1) |
|
weights = weights / weights_sum.expand(out_length, p) |
|
|
|
|
|
|
|
weights_zero_tmp = torch.sum((weights == 0), 0) |
|
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): |
|
indices = indices.narrow(1, 1, p - 2) |
|
weights = weights.narrow(1, 1, p - 2) |
|
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): |
|
indices = indices.narrow(1, 0, p - 2) |
|
weights = weights.narrow(1, 0, p - 2) |
|
weights = weights.contiguous() |
|
indices = indices.contiguous() |
|
sym_len_s = -indices.min() + 1 |
|
sym_len_e = indices.max() - in_length |
|
indices = indices + sym_len_s - 1 |
|
return weights, indices, int(sym_len_s), int(sym_len_e) |
|
|
|
|
|
@torch.no_grad() |
|
def imresize(img, scale, antialiasing=True): |
|
"""imresize function same as MATLAB. |
|
|
|
It now only supports bicubic. |
|
The same scale applies for both height and width. |
|
|
|
Args: |
|
img (Tensor | Numpy array): |
|
Tensor: Input image with shape (c, h, w), [0, 1] range. |
|
Numpy: Input image with shape (h, w, c), [0, 1] range. |
|
scale (float): Scale factor. The same scale applies for both height |
|
and width. |
|
antialisaing (bool): Whether to apply anti-aliasing when downsampling. |
|
Default: True. |
|
|
|
Returns: |
|
Tensor: Output image with shape (c, h, w), [0, 1] range, w/o round. |
|
""" |
|
if type(img).__module__ == np.__name__: |
|
numpy_type = True |
|
img = torch.from_numpy(img.transpose(2, 0, 1)).float() |
|
else: |
|
numpy_type = False |
|
|
|
in_c, in_h, in_w = img.size() |
|
out_h, out_w = math.ceil(in_h * scale), math.ceil(in_w * scale) |
|
kernel_width = 4 |
|
kernel = 'cubic' |
|
|
|
|
|
weights_h, indices_h, sym_len_hs, sym_len_he = calculate_weights_indices(in_h, out_h, scale, kernel, kernel_width, |
|
antialiasing) |
|
weights_w, indices_w, sym_len_ws, sym_len_we = calculate_weights_indices(in_w, out_w, scale, kernel, kernel_width, |
|
antialiasing) |
|
|
|
|
|
img_aug = torch.FloatTensor(in_c, in_h + sym_len_hs + sym_len_he, in_w) |
|
img_aug.narrow(1, sym_len_hs, in_h).copy_(img) |
|
|
|
sym_patch = img[:, :sym_len_hs, :] |
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(1, inv_idx) |
|
img_aug.narrow(1, 0, sym_len_hs).copy_(sym_patch_inv) |
|
|
|
sym_patch = img[:, -sym_len_he:, :] |
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(1, inv_idx) |
|
img_aug.narrow(1, sym_len_hs + in_h, sym_len_he).copy_(sym_patch_inv) |
|
|
|
out_1 = torch.FloatTensor(in_c, out_h, in_w) |
|
kernel_width = weights_h.size(1) |
|
for i in range(out_h): |
|
idx = int(indices_h[i][0]) |
|
for j in range(in_c): |
|
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_h[i]) |
|
|
|
|
|
|
|
out_1_aug = torch.FloatTensor(in_c, out_h, in_w + sym_len_ws + sym_len_we) |
|
out_1_aug.narrow(2, sym_len_ws, in_w).copy_(out_1) |
|
|
|
sym_patch = out_1[:, :, :sym_len_ws] |
|
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(2, inv_idx) |
|
out_1_aug.narrow(2, 0, sym_len_ws).copy_(sym_patch_inv) |
|
|
|
sym_patch = out_1[:, :, -sym_len_we:] |
|
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(2, inv_idx) |
|
out_1_aug.narrow(2, sym_len_ws + in_w, sym_len_we).copy_(sym_patch_inv) |
|
|
|
out_2 = torch.FloatTensor(in_c, out_h, out_w) |
|
kernel_width = weights_w.size(1) |
|
for i in range(out_w): |
|
idx = int(indices_w[i][0]) |
|
for j in range(in_c): |
|
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_w[i]) |
|
|
|
if numpy_type: |
|
out_2 = out_2.numpy().transpose(1, 2, 0) |
|
return out_2 |
|
|
|
|
|
def rgb2ycbcr(img, y_only=False): |
|
"""Convert a RGB image to YCbCr image. |
|
|
|
This function produces the same results as Matlab's `rgb2ycbcr` function. |
|
It implements the ITU-R BT.601 conversion for standard-definition |
|
television. See more details in |
|
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. |
|
|
|
It differs from a similar function in cv2.cvtColor: `RGB <-> YCrCb`. |
|
In OpenCV, it implements a JPEG conversion. See more details in |
|
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. |
|
|
|
Args: |
|
img (ndarray): The input image. It accepts: |
|
1. np.uint8 type with range [0, 255]; |
|
2. np.float32 type with range [0, 1]. |
|
y_only (bool): Whether to only return Y channel. Default: False. |
|
|
|
Returns: |
|
ndarray: The converted YCbCr image. The output image has the same type |
|
and range as input image. |
|
""" |
|
img_type = img.dtype |
|
img = _convert_input_type_range(img) |
|
if y_only: |
|
out_img = np.dot(img, [65.481, 128.553, 24.966]) + 16.0 |
|
else: |
|
out_img = np.matmul( |
|
img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) + [16, 128, 128] |
|
out_img = _convert_output_type_range(out_img, img_type) |
|
return out_img |
|
|
|
|
|
def bgr2ycbcr(img, y_only=False): |
|
"""Convert a BGR image to YCbCr image. |
|
|
|
The bgr version of rgb2ycbcr. |
|
It implements the ITU-R BT.601 conversion for standard-definition |
|
television. See more details in |
|
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. |
|
|
|
It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`. |
|
In OpenCV, it implements a JPEG conversion. See more details in |
|
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. |
|
|
|
Args: |
|
img (ndarray): The input image. It accepts: |
|
1. np.uint8 type with range [0, 255]; |
|
2. np.float32 type with range [0, 1]. |
|
y_only (bool): Whether to only return Y channel. Default: False. |
|
|
|
Returns: |
|
ndarray: The converted YCbCr image. The output image has the same type |
|
and range as input image. |
|
""" |
|
img_type = img.dtype |
|
img = _convert_input_type_range(img) |
|
if y_only: |
|
out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0 |
|
else: |
|
out_img = np.matmul( |
|
img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [16, 128, 128] |
|
out_img = _convert_output_type_range(out_img, img_type) |
|
return out_img |
|
|
|
|
|
def ycbcr2rgb(img): |
|
"""Convert a YCbCr image to RGB image. |
|
|
|
This function produces the same results as Matlab's ycbcr2rgb function. |
|
It implements the ITU-R BT.601 conversion for standard-definition |
|
television. See more details in |
|
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. |
|
|
|
It differs from a similar function in cv2.cvtColor: `YCrCb <-> RGB`. |
|
In OpenCV, it implements a JPEG conversion. See more details in |
|
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. |
|
|
|
Args: |
|
img (ndarray): The input image. It accepts: |
|
1. np.uint8 type with range [0, 255]; |
|
2. np.float32 type with range [0, 1]. |
|
|
|
Returns: |
|
ndarray: The converted RGB image. The output image has the same type |
|
and range as input image. |
|
""" |
|
img_type = img.dtype |
|
img = _convert_input_type_range(img) * 255 |
|
out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071], |
|
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] |
|
out_img = _convert_output_type_range(out_img, img_type) |
|
return out_img |
|
|
|
|
|
def ycbcr2bgr(img): |
|
"""Convert a YCbCr image to BGR image. |
|
|
|
The bgr version of ycbcr2rgb. |
|
It implements the ITU-R BT.601 conversion for standard-definition |
|
television. See more details in |
|
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. |
|
|
|
It differs from a similar function in cv2.cvtColor: `YCrCb <-> BGR`. |
|
In OpenCV, it implements a JPEG conversion. See more details in |
|
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. |
|
|
|
Args: |
|
img (ndarray): The input image. It accepts: |
|
1. np.uint8 type with range [0, 255]; |
|
2. np.float32 type with range [0, 1]. |
|
|
|
Returns: |
|
ndarray: The converted BGR image. The output image has the same type |
|
and range as input image. |
|
""" |
|
img_type = img.dtype |
|
img = _convert_input_type_range(img) * 255 |
|
out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0.00791071, -0.00153632, 0], |
|
[0, -0.00318811, 0.00625893]]) * 255.0 + [-276.836, 135.576, -222.921] |
|
out_img = _convert_output_type_range(out_img, img_type) |
|
return out_img |
|
|
|
|
|
def _convert_input_type_range(img): |
|
"""Convert the type and range of the input image. |
|
|
|
It converts the input image to np.float32 type and range of [0, 1]. |
|
It is mainly used for pre-processing the input image in colorspace |
|
convertion functions such as rgb2ycbcr and ycbcr2rgb. |
|
|
|
Args: |
|
img (ndarray): The input image. It accepts: |
|
1. np.uint8 type with range [0, 255]; |
|
2. np.float32 type with range [0, 1]. |
|
|
|
Returns: |
|
(ndarray): The converted image with type of np.float32 and range of |
|
[0, 1]. |
|
""" |
|
img_type = img.dtype |
|
img = img.astype(np.float32) |
|
if img_type == np.float32: |
|
pass |
|
elif img_type == np.uint8: |
|
img /= 255. |
|
else: |
|
raise TypeError('The img type should be np.float32 or np.uint8, ' f'but got {img_type}') |
|
return img |
|
|
|
|
|
def _convert_output_type_range(img, dst_type): |
|
"""Convert the type and range of the image according to dst_type. |
|
|
|
It converts the image to desired type and range. If `dst_type` is np.uint8, |
|
images will be converted to np.uint8 type with range [0, 255]. If |
|
`dst_type` is np.float32, it converts the image to np.float32 type with |
|
range [0, 1]. |
|
It is mainly used for post-processing images in colorspace convertion |
|
functions such as rgb2ycbcr and ycbcr2rgb. |
|
|
|
Args: |
|
img (ndarray): The image to be converted with np.float32 type and |
|
range [0, 255]. |
|
dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it |
|
converts the image to np.uint8 type with range [0, 255]. If |
|
dst_type is np.float32, it converts the image to np.float32 type |
|
with range [0, 1]. |
|
|
|
Returns: |
|
(ndarray): The converted image with desired type and range. |
|
""" |
|
if dst_type not in (np.uint8, np.float32): |
|
raise TypeError('The dst_type should be np.float32 or np.uint8, ' f'but got {dst_type}') |
|
if dst_type == np.uint8: |
|
img = img.round() |
|
else: |
|
img /= 255. |
|
return img.astype(dst_type) |
|
|