|
import cv2 |
|
import os |
|
import os.path as osp |
|
import numpy as np |
|
from PIL import Image |
|
import torch |
|
from torch.hub import download_url_to_file, get_dir |
|
from urllib.parse import urlparse |
|
|
|
|
|
|
|
|
|
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) |
|
|
|
|
|
def download_pretrained_models(file_ids, save_path_root): |
|
os.makedirs(save_path_root, exist_ok=True) |
|
|
|
for file_name, file_id in file_ids.items(): |
|
file_url = 'https://drive.google.com/uc?id='+file_id |
|
save_path = osp.abspath(osp.join(save_path_root, file_name)) |
|
if osp.exists(save_path): |
|
user_response = input(f'{file_name} already exist. Do you want to cover it? Y/N\n') |
|
if user_response.lower() == 'y': |
|
print(f'Covering {file_name} to {save_path}') |
|
|
|
|
|
elif user_response.lower() == 'n': |
|
print(f'Skipping {file_name}') |
|
else: |
|
raise ValueError('Wrong input. Only accepts Y/N.') |
|
else: |
|
print(f'Downloading {file_name} to {save_path}') |
|
|
|
|
|
|
|
|
|
def imwrite(img, file_path, params=None, auto_mkdir=True): |
|
"""Write image to file. |
|
|
|
Args: |
|
img (ndarray): Image array to be written. |
|
file_path (str): Image file path. |
|
params (None or list): Same as opencv's :func:`imwrite` interface. |
|
auto_mkdir (bool): If the parent folder of `file_path` does not exist, |
|
whether to create it automatically. |
|
|
|
Returns: |
|
bool: Successful or not. |
|
""" |
|
if auto_mkdir: |
|
dir_name = os.path.abspath(os.path.dirname(file_path)) |
|
os.makedirs(dir_name, exist_ok=True) |
|
return cv2.imwrite(file_path, img, params) |
|
|
|
|
|
def img2tensor(imgs, bgr2rgb=True, float32=True): |
|
"""Numpy array to tensor. |
|
|
|
Args: |
|
imgs (list[ndarray] | ndarray): Input images. |
|
bgr2rgb (bool): Whether to change bgr to rgb. |
|
float32 (bool): Whether to change to float32. |
|
|
|
Returns: |
|
list[tensor] | tensor: Tensor images. If returned results only have |
|
one element, just return tensor. |
|
""" |
|
|
|
def _totensor(img, bgr2rgb, float32): |
|
if img.shape[2] == 3 and bgr2rgb: |
|
if img.dtype == 'float64': |
|
img = img.astype('float32') |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
img = torch.from_numpy(img.transpose(2, 0, 1)) |
|
if float32: |
|
img = img.float() |
|
return img |
|
|
|
if isinstance(imgs, list): |
|
return [_totensor(img, bgr2rgb, float32) for img in imgs] |
|
else: |
|
return _totensor(imgs, bgr2rgb, float32) |
|
|
|
|
|
def load_file_from_url(url, model_dir=None, progress=True, file_name=None): |
|
"""Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py |
|
""" |
|
if model_dir is None: |
|
hub_dir = get_dir() |
|
model_dir = os.path.join(hub_dir, 'checkpoints') |
|
|
|
os.makedirs(os.path.join(ROOT_DIR, model_dir), exist_ok=True) |
|
|
|
parts = urlparse(url) |
|
filename = os.path.basename(parts.path) |
|
if file_name is not None: |
|
filename = file_name |
|
cached_file = os.path.abspath(os.path.join(ROOT_DIR, model_dir, filename)) |
|
if not os.path.exists(cached_file): |
|
print(f'Downloading: "{url}" to {cached_file}\n') |
|
download_url_to_file(url, cached_file, hash_prefix=None, progress=progress) |
|
return cached_file |
|
|
|
|
|
def scandir(dir_path, suffix=None, recursive=False, full_path=False): |
|
"""Scan a directory to find the interested files. |
|
Args: |
|
dir_path (str): Path of the directory. |
|
suffix (str | tuple(str), optional): File suffix that we are |
|
interested in. Default: None. |
|
recursive (bool, optional): If set to True, recursively scan the |
|
directory. Default: False. |
|
full_path (bool, optional): If set to True, include the dir_path. |
|
Default: False. |
|
Returns: |
|
A generator for all the interested files with relative paths. |
|
""" |
|
|
|
if (suffix is not None) and not isinstance(suffix, (str, tuple)): |
|
raise TypeError('"suffix" must be a string or tuple of strings') |
|
|
|
root = dir_path |
|
|
|
def _scandir(dir_path, suffix, recursive): |
|
for entry in os.scandir(dir_path): |
|
if not entry.name.startswith('.') and entry.is_file(): |
|
if full_path: |
|
return_path = entry.path |
|
else: |
|
return_path = osp.relpath(entry.path, root) |
|
|
|
if suffix is None: |
|
yield return_path |
|
elif return_path.endswith(suffix): |
|
yield return_path |
|
else: |
|
if recursive: |
|
yield from _scandir(entry.path, suffix=suffix, recursive=recursive) |
|
else: |
|
continue |
|
|
|
return _scandir(dir_path, suffix=suffix, recursive=recursive) |
|
|
|
|
|
def is_gray(img, threshold=10): |
|
img = Image.fromarray(img) |
|
if len(img.getbands()) == 1: |
|
return True |
|
img1 = np.asarray(img.getchannel(channel=0), dtype=np.int16) |
|
img2 = np.asarray(img.getchannel(channel=1), dtype=np.int16) |
|
img3 = np.asarray(img.getchannel(channel=2), dtype=np.int16) |
|
diff1 = (img1 - img2).var() |
|
diff2 = (img2 - img3).var() |
|
diff3 = (img3 - img1).var() |
|
diff_sum = (diff1 + diff2 + diff3) / 3.0 |
|
if diff_sum <= threshold: |
|
return True |
|
else: |
|
return False |
|
|
|
def rgb2gray(img, out_channel=3): |
|
r, g, b = img[:,:,0], img[:,:,1], img[:,:,2] |
|
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b |
|
if out_channel == 3: |
|
gray = gray[:,:,np.newaxis].repeat(3, axis=2) |
|
return gray |
|
|
|
def bgr2gray(img, out_channel=3): |
|
b, g, r = img[:,:,0], img[:,:,1], img[:,:,2] |
|
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b |
|
if out_channel == 3: |
|
gray = gray[:,:,np.newaxis].repeat(3, axis=2) |
|
return gray |
|
|