|
"""Modified from https://github.com/chaofengc/PSFRGAN |
|
""" |
|
import numpy as np |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
|
|
|
|
class NormLayer(nn.Module): |
|
"""Normalization Layers. |
|
|
|
Args: |
|
channels: input channels, for batch norm and instance norm. |
|
input_size: input shape without batch size, for layer norm. |
|
""" |
|
|
|
def __init__(self, channels, normalize_shape=None, norm_type='bn'): |
|
super(NormLayer, self).__init__() |
|
norm_type = norm_type.lower() |
|
self.norm_type = norm_type |
|
if norm_type == 'bn': |
|
self.norm = nn.BatchNorm2d(channels, affine=True) |
|
elif norm_type == 'in': |
|
self.norm = nn.InstanceNorm2d(channels, affine=False) |
|
elif norm_type == 'gn': |
|
self.norm = nn.GroupNorm(32, channels, affine=True) |
|
elif norm_type == 'pixel': |
|
self.norm = lambda x: F.normalize(x, p=2, dim=1) |
|
elif norm_type == 'layer': |
|
self.norm = nn.LayerNorm(normalize_shape) |
|
elif norm_type == 'none': |
|
self.norm = lambda x: x * 1.0 |
|
else: |
|
assert 1 == 0, f'Norm type {norm_type} not support.' |
|
|
|
def forward(self, x, ref=None): |
|
if self.norm_type == 'spade': |
|
return self.norm(x, ref) |
|
else: |
|
return self.norm(x) |
|
|
|
|
|
class ReluLayer(nn.Module): |
|
"""Relu Layer. |
|
|
|
Args: |
|
relu type: type of relu layer, candidates are |
|
- ReLU |
|
- LeakyReLU: default relu slope 0.2 |
|
- PRelu |
|
- SELU |
|
- none: direct pass |
|
""" |
|
|
|
def __init__(self, channels, relu_type='relu'): |
|
super(ReluLayer, self).__init__() |
|
relu_type = relu_type.lower() |
|
if relu_type == 'relu': |
|
self.func = nn.ReLU(True) |
|
elif relu_type == 'leakyrelu': |
|
self.func = nn.LeakyReLU(0.2, inplace=True) |
|
elif relu_type == 'prelu': |
|
self.func = nn.PReLU(channels) |
|
elif relu_type == 'selu': |
|
self.func = nn.SELU(True) |
|
elif relu_type == 'none': |
|
self.func = lambda x: x * 1.0 |
|
else: |
|
assert 1 == 0, f'Relu type {relu_type} not support.' |
|
|
|
def forward(self, x): |
|
return self.func(x) |
|
|
|
|
|
class ConvLayer(nn.Module): |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
scale='none', |
|
norm_type='none', |
|
relu_type='none', |
|
use_pad=True, |
|
bias=True): |
|
super(ConvLayer, self).__init__() |
|
self.use_pad = use_pad |
|
self.norm_type = norm_type |
|
if norm_type in ['bn']: |
|
bias = False |
|
|
|
stride = 2 if scale == 'down' else 1 |
|
|
|
self.scale_func = lambda x: x |
|
if scale == 'up': |
|
self.scale_func = lambda x: nn.functional.interpolate(x, scale_factor=2, mode='nearest') |
|
|
|
self.reflection_pad = nn.ReflectionPad2d(int(np.ceil((kernel_size - 1.) / 2))) |
|
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, bias=bias) |
|
|
|
self.relu = ReluLayer(out_channels, relu_type) |
|
self.norm = NormLayer(out_channels, norm_type=norm_type) |
|
|
|
def forward(self, x): |
|
out = self.scale_func(x) |
|
if self.use_pad: |
|
out = self.reflection_pad(out) |
|
out = self.conv2d(out) |
|
out = self.norm(out) |
|
out = self.relu(out) |
|
return out |
|
|
|
|
|
class ResidualBlock(nn.Module): |
|
""" |
|
Residual block recommended in: http://torch.ch/blog/2016/02/04/resnets.html |
|
""" |
|
|
|
def __init__(self, c_in, c_out, relu_type='prelu', norm_type='bn', scale='none'): |
|
super(ResidualBlock, self).__init__() |
|
|
|
if scale == 'none' and c_in == c_out: |
|
self.shortcut_func = lambda x: x |
|
else: |
|
self.shortcut_func = ConvLayer(c_in, c_out, 3, scale) |
|
|
|
scale_config_dict = {'down': ['none', 'down'], 'up': ['up', 'none'], 'none': ['none', 'none']} |
|
scale_conf = scale_config_dict[scale] |
|
|
|
self.conv1 = ConvLayer(c_in, c_out, 3, scale_conf[0], norm_type=norm_type, relu_type=relu_type) |
|
self.conv2 = ConvLayer(c_out, c_out, 3, scale_conf[1], norm_type=norm_type, relu_type='none') |
|
|
|
def forward(self, x): |
|
identity = self.shortcut_func(x) |
|
|
|
res = self.conv1(x) |
|
res = self.conv2(res) |
|
return identity + res |
|
|
|
|
|
class ParseNet(nn.Module): |
|
|
|
def __init__(self, |
|
in_size=128, |
|
out_size=128, |
|
min_feat_size=32, |
|
base_ch=64, |
|
parsing_ch=19, |
|
res_depth=10, |
|
relu_type='LeakyReLU', |
|
norm_type='bn', |
|
ch_range=[32, 256]): |
|
super().__init__() |
|
self.res_depth = res_depth |
|
act_args = {'norm_type': norm_type, 'relu_type': relu_type} |
|
min_ch, max_ch = ch_range |
|
|
|
ch_clip = lambda x: max(min_ch, min(x, max_ch)) |
|
min_feat_size = min(in_size, min_feat_size) |
|
|
|
down_steps = int(np.log2(in_size // min_feat_size)) |
|
up_steps = int(np.log2(out_size // min_feat_size)) |
|
|
|
|
|
self.encoder = [] |
|
self.encoder.append(ConvLayer(3, base_ch, 3, 1)) |
|
head_ch = base_ch |
|
for i in range(down_steps): |
|
cin, cout = ch_clip(head_ch), ch_clip(head_ch * 2) |
|
self.encoder.append(ResidualBlock(cin, cout, scale='down', **act_args)) |
|
head_ch = head_ch * 2 |
|
|
|
self.body = [] |
|
for i in range(res_depth): |
|
self.body.append(ResidualBlock(ch_clip(head_ch), ch_clip(head_ch), **act_args)) |
|
|
|
self.decoder = [] |
|
for i in range(up_steps): |
|
cin, cout = ch_clip(head_ch), ch_clip(head_ch // 2) |
|
self.decoder.append(ResidualBlock(cin, cout, scale='up', **act_args)) |
|
head_ch = head_ch // 2 |
|
|
|
self.encoder = nn.Sequential(*self.encoder) |
|
self.body = nn.Sequential(*self.body) |
|
self.decoder = nn.Sequential(*self.decoder) |
|
self.out_img_conv = ConvLayer(ch_clip(head_ch), 3) |
|
self.out_mask_conv = ConvLayer(ch_clip(head_ch), parsing_ch) |
|
|
|
def forward(self, x): |
|
feat = self.encoder(x) |
|
x = feat + self.body(feat) |
|
x = self.decoder(x) |
|
out_img = self.out_img_conv(x) |
|
out_mask = self.out_mask_conv(x) |
|
return out_mask, out_img |
|
|