ACCC1380 commited on
Commit
e6e3c5f
·
verified ·
1 Parent(s): 3275521

Upload lora-scripts/sd-scripts/tools/cache_latents.py with huggingface_hub

Browse files
lora-scripts/sd-scripts/tools/cache_latents.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # latentsのdiskへの事前キャッシュを行う / cache latents to disk
2
+
3
+ import argparse
4
+ import math
5
+ from multiprocessing import Value
6
+ import os
7
+
8
+ from accelerate.utils import set_seed
9
+ import torch
10
+ from tqdm import tqdm
11
+
12
+ from library import config_util
13
+ from library import train_util
14
+ from library import sdxl_train_util
15
+ from library.config_util import (
16
+ ConfigSanitizer,
17
+ BlueprintGenerator,
18
+ )
19
+ from library.utils import setup_logging
20
+ setup_logging()
21
+ import logging
22
+ logger = logging.getLogger(__name__)
23
+
24
+ def cache_to_disk(args: argparse.Namespace) -> None:
25
+ train_util.prepare_dataset_args(args, True)
26
+
27
+ # check cache latents arg
28
+ assert args.cache_latents_to_disk, "cache_latents_to_disk must be True / cache_latents_to_diskはTrueである必要があります"
29
+
30
+ use_dreambooth_method = args.in_json is None
31
+
32
+ if args.seed is not None:
33
+ set_seed(args.seed) # 乱数系列を初期化する
34
+
35
+ # tokenizerを準備する:datasetを動かすために必要
36
+ if args.sdxl:
37
+ tokenizer1, tokenizer2 = sdxl_train_util.load_tokenizers(args)
38
+ tokenizers = [tokenizer1, tokenizer2]
39
+ else:
40
+ tokenizer = train_util.load_tokenizer(args)
41
+ tokenizers = [tokenizer]
42
+
43
+ # データセットを準備する
44
+ if args.dataset_class is None:
45
+ blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, False, True))
46
+ if args.dataset_config is not None:
47
+ logger.info(f"Load dataset config from {args.dataset_config}")
48
+ user_config = config_util.load_user_config(args.dataset_config)
49
+ ignored = ["train_data_dir", "in_json"]
50
+ if any(getattr(args, attr) is not None for attr in ignored):
51
+ logger.warning(
52
+ "ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
53
+ ", ".join(ignored)
54
+ )
55
+ )
56
+ else:
57
+ if use_dreambooth_method:
58
+ logger.info("Using DreamBooth method.")
59
+ user_config = {
60
+ "datasets": [
61
+ {
62
+ "subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(
63
+ args.train_data_dir, args.reg_data_dir
64
+ )
65
+ }
66
+ ]
67
+ }
68
+ else:
69
+ logger.info("Training with captions.")
70
+ user_config = {
71
+ "datasets": [
72
+ {
73
+ "subsets": [
74
+ {
75
+ "image_dir": args.train_data_dir,
76
+ "metadata_file": args.in_json,
77
+ }
78
+ ]
79
+ }
80
+ ]
81
+ }
82
+
83
+ blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizers)
84
+ train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
85
+ else:
86
+ train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizers)
87
+
88
+ # datasetのcache_latentsを呼ばなければ、生の画像が返る
89
+
90
+ current_epoch = Value("i", 0)
91
+ current_step = Value("i", 0)
92
+ ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
93
+ collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
94
+
95
+ # acceleratorを準備する
96
+ logger.info("prepare accelerator")
97
+ accelerator = train_util.prepare_accelerator(args)
98
+
99
+ # mixed precisionに対応した型を用意しておき適宜castする
100
+ weight_dtype, _ = train_util.prepare_dtype(args)
101
+ vae_dtype = torch.float32 if args.no_half_vae else weight_dtype
102
+
103
+ # モデルを読み込む
104
+ logger.info("load model")
105
+ if args.sdxl:
106
+ (_, _, _, vae, _, _, _) = sdxl_train_util.load_target_model(args, accelerator, "sdxl", weight_dtype)
107
+ else:
108
+ _, vae, _, _ = train_util.load_target_model(args, weight_dtype, accelerator)
109
+
110
+ if torch.__version__ >= "2.0.0": # PyTorch 2.0.0 以上対応のxformersなら以下が使える
111
+ vae.set_use_memory_efficient_attention_xformers(args.xformers)
112
+ vae.to(accelerator.device, dtype=vae_dtype)
113
+ vae.requires_grad_(False)
114
+ vae.eval()
115
+
116
+ # dataloaderを準備する
117
+ train_dataset_group.set_caching_mode("latents")
118
+
119
+ # DataLoaderのプロセス数:0 は persistent_workers が使えないので注意
120
+ n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers
121
+
122
+ train_dataloader = torch.utils.data.DataLoader(
123
+ train_dataset_group,
124
+ batch_size=1,
125
+ shuffle=True,
126
+ collate_fn=collator,
127
+ num_workers=n_workers,
128
+ persistent_workers=args.persistent_data_loader_workers,
129
+ )
130
+
131
+ # acceleratorを使ってモデルを準備する:マルチGPUで使えるようになるはず
132
+ train_dataloader = accelerator.prepare(train_dataloader)
133
+
134
+ # データ取得のためのループ
135
+ for batch in tqdm(train_dataloader):
136
+ b_size = len(batch["images"])
137
+ vae_batch_size = b_size if args.vae_batch_size is None else args.vae_batch_size
138
+ flip_aug = batch["flip_aug"]
139
+ random_crop = batch["random_crop"]
140
+ bucket_reso = batch["bucket_reso"]
141
+
142
+ # バッチを分割して処理する
143
+ for i in range(0, b_size, vae_batch_size):
144
+ images = batch["images"][i : i + vae_batch_size]
145
+ absolute_paths = batch["absolute_paths"][i : i + vae_batch_size]
146
+ resized_sizes = batch["resized_sizes"][i : i + vae_batch_size]
147
+
148
+ image_infos = []
149
+ for i, (image, absolute_path, resized_size) in enumerate(zip(images, absolute_paths, resized_sizes)):
150
+ image_info = train_util.ImageInfo(absolute_path, 1, "dummy", False, absolute_path)
151
+ image_info.image = image
152
+ image_info.bucket_reso = bucket_reso
153
+ image_info.resized_size = resized_size
154
+ image_info.latents_npz = os.path.splitext(absolute_path)[0] + ".npz"
155
+
156
+ if args.skip_existing:
157
+ if train_util.is_disk_cached_latents_is_expected(image_info.bucket_reso, image_info.latents_npz, flip_aug):
158
+ logger.warning(f"Skipping {image_info.latents_npz} because it already exists.")
159
+ continue
160
+
161
+ image_infos.append(image_info)
162
+
163
+ if len(image_infos) > 0:
164
+ train_util.cache_batch_latents(vae, True, image_infos, flip_aug, random_crop)
165
+
166
+ accelerator.wait_for_everyone()
167
+ accelerator.print(f"Finished caching latents for {len(train_dataset_group)} batches.")
168
+
169
+
170
+ def setup_parser() -> argparse.ArgumentParser:
171
+ parser = argparse.ArgumentParser()
172
+
173
+ train_util.add_sd_models_arguments(parser)
174
+ train_util.add_training_arguments(parser, True)
175
+ train_util.add_dataset_arguments(parser, True, True, True)
176
+ config_util.add_config_arguments(parser)
177
+ parser.add_argument("--sdxl", action="store_true", help="Use SDXL model / SDXLモデルを使用する")
178
+ parser.add_argument(
179
+ "--no_half_vae",
180
+ action="store_true",
181
+ help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う",
182
+ )
183
+ parser.add_argument(
184
+ "--skip_existing",
185
+ action="store_true",
186
+ help="skip images if npz already exists (both normal and flipped exists if flip_aug is enabled) / npzが既に存在する画像をスキップする(flip_aug有効時は通常、反転の両方が存在する画像をスキップ)",
187
+ )
188
+ return parser
189
+
190
+
191
+ if __name__ == "__main__":
192
+ parser = setup_parser()
193
+
194
+ args = parser.parse_args()
195
+ args = train_util.read_config_from_file(args, parser)
196
+
197
+ cache_to_disk(args)