ACCC1380 commited on
Commit
2f4f52d
·
verified ·
1 Parent(s): 1aae6cc

Upload lora3/config_lora-20240527-224905.toml with huggingface_hub

Browse files
lora3/config_lora-20240527-224905.toml ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ bucket_reso_steps = 32
2
+ cache_latents = true
3
+ cache_latents_to_disk = true
4
+ caption_extension = ".txt"
5
+ clip_skip = 2
6
+ dynamo_backend = "no"
7
+ enable_bucket = true
8
+ epoch = 2
9
+ gradient_accumulation_steps = 1
10
+ gradient_checkpointing = true
11
+ huber_c = 0.1
12
+ huber_schedule = "snr"
13
+ learning_rate = 0.0002
14
+ logging_dir = "/root/autodl-tmp/logs/example"
15
+ loss_type = "l2"
16
+ lr_scheduler = "constant"
17
+ lr_scheduler_args = []
18
+ lr_scheduler_num_cycles = 1
19
+ lr_scheduler_power = 1
20
+ max_bucket_reso = 2176
21
+ max_data_loader_n_workers = 0
22
+ max_grad_norm = 1
23
+ max_timestep = 1000
24
+ max_token_length = 75
25
+ max_train_epochs = 2
26
+ max_train_steps = 18160
27
+ min_bucket_reso = 384
28
+ mixed_precision = "fp16"
29
+ network_alpha = 16
30
+ network_args = []
31
+ network_dim = 32
32
+ network_module = "networks.lora"
33
+ network_weights = "/root/kohya_ss/resume/earknights_all.safetensors"
34
+ no_half_vae = true
35
+ noise_offset = 0.035
36
+ noise_offset_type = "Original"
37
+ optimizer_args = []
38
+ optimizer_type = "AdamW"
39
+ output_dir = "/root/kohya_ss/output3"
40
+ output_name = "arknight_all_v2"
41
+ pretrained_model_name_or_path = "/group_share/lora-scripts/sd-models/v6.safetensors"
42
+ prior_loss_weight = 1
43
+ resolution = "1024,1024"
44
+ sample_every_n_steps = 1000
45
+ sample_prompts = "/root/kohya_ss/output3/prompt.txt"
46
+ sample_sampler = "euler_a"
47
+ save_every_n_epochs = 1
48
+ save_last_n_steps_state = 1
49
+ save_model_as = "safetensors"
50
+ save_precision = "fp16"
51
+ seed = 12345
52
+ text_encoder_lr = 0.0001
53
+ train_batch_size = 56
54
+ train_data_dir = "/arknight_0525"
55
+ training_comment = "example"
56
+ unet_lr = 0.0001
57
+ xformers = true