ACCC1380's picture
Upload lora-scripts/sd-scripts/networks/lora_interrogator.py with huggingface_hub
7cc8356 verified
raw
history blame
6.11 kB
from tqdm import tqdm
from library import model_util
import library.train_util as train_util
import argparse
from transformers import CLIPTokenizer
import torch
from library.device_utils import init_ipex, get_preferred_device
init_ipex()
import library.model_util as model_util
import lora
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
V2_STABLE_DIFFUSION_PATH = "stabilityai/stable-diffusion-2" # ここからtokenizerだけ使う
DEVICE = get_preferred_device()
def interrogate(args):
weights_dtype = torch.float16
# いろいろ準備する
logger.info(f"loading SD model: {args.sd_model}")
args.pretrained_model_name_or_path = args.sd_model
args.vae = None
text_encoder, vae, unet, _ = train_util._load_target_model(args,weights_dtype, DEVICE)
logger.info(f"loading LoRA: {args.model}")
network, weights_sd = lora.create_network_from_weights(1.0, args.model, vae, text_encoder, unet)
# text encoder向けの重みがあるかチェックする:本当はlora側でやるのがいい
has_te_weight = False
for key in weights_sd.keys():
if 'lora_te' in key:
has_te_weight = True
break
if not has_te_weight:
logger.error("This LoRA does not have modules for Text Encoder, cannot interrogate / このLoRAはText Encoder向けのモジュールがないため調査できません")
return
del vae
logger.info("loading tokenizer")
if args.v2:
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(V2_STABLE_DIFFUSION_PATH, subfolder="tokenizer")
else:
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH) # , model_max_length=max_token_length + 2)
text_encoder.to(DEVICE, dtype=weights_dtype)
text_encoder.eval()
unet.to(DEVICE, dtype=weights_dtype)
unet.eval() # U-Netは呼び出さないので不要だけど
# トークンをひとつひとつ当たっていく
token_id_start = 0
token_id_end = max(tokenizer.all_special_ids)
logger.info(f"interrogate tokens are: {token_id_start} to {token_id_end}")
def get_all_embeddings(text_encoder):
embs = []
with torch.no_grad():
for token_id in tqdm(range(token_id_start, token_id_end + 1, args.batch_size)):
batch = []
for tid in range(token_id, min(token_id_end + 1, token_id + args.batch_size)):
tokens = [tokenizer.bos_token_id, tid, tokenizer.eos_token_id]
# tokens = [tid] # こちらは結果がいまひとつ
batch.append(tokens)
# batch_embs = text_encoder(torch.tensor(batch).to(DEVICE))[0].to("cpu") # bos/eosも含めたほうが差が出るようだ [:, 1]
# clip skip対応
batch = torch.tensor(batch).to(DEVICE)
if args.clip_skip is None:
encoder_hidden_states = text_encoder(batch)[0]
else:
enc_out = text_encoder(batch, output_hidden_states=True, return_dict=True)
encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip]
encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.to("cpu")
embs.extend(encoder_hidden_states)
return torch.stack(embs)
logger.info("get original text encoder embeddings.")
orig_embs = get_all_embeddings(text_encoder)
network.apply_to(text_encoder, unet, True, len(network.unet_loras) > 0)
info = network.load_state_dict(weights_sd, strict=False)
logger.info(f"Loading LoRA weights: {info}")
network.to(DEVICE, dtype=weights_dtype)
network.eval()
del unet
logger.info("You can ignore warning messages start with '_IncompatibleKeys' (LoRA model does not have alpha because trained by older script) / '_IncompatibleKeys'の警告は無視して構いません(以前のスクリプトで学習されたLoRAモデルのためalphaの定義がありません)")
logger.info("get text encoder embeddings with lora.")
lora_embs = get_all_embeddings(text_encoder)
# 比べる:とりあえず単純に差分の絶対値で
logger.info("comparing...")
diffs = {}
for i, (orig_emb, lora_emb) in enumerate(zip(orig_embs, tqdm(lora_embs))):
diff = torch.mean(torch.abs(orig_emb - lora_emb))
# diff = torch.mean(torch.cosine_similarity(orig_emb, lora_emb, dim=1)) # うまく検出できない
diff = float(diff.detach().to('cpu').numpy())
diffs[token_id_start + i] = diff
diffs_sorted = sorted(diffs.items(), key=lambda x: -x[1])
# 結果を表示する
print("top 100:")
for i, (token, diff) in enumerate(diffs_sorted[:100]):
# if diff < 1e-6:
# break
string = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens([token]))
print(f"[{i:3d}]: {token:5d} {string:<20s}: {diff:.5f}")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument("--v2", action='store_true',
help='load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む')
parser.add_argument("--sd_model", type=str, default=None,
help="Stable Diffusion model to load: ckpt or safetensors file / 読み込むSDのモデル、ckptまたはsafetensors")
parser.add_argument("--model", type=str, default=None,
help="LoRA model to interrogate: ckpt or safetensors file / 調査するLoRAモデル、ckptまたはsafetensors")
parser.add_argument("--batch_size", type=int, default=16,
help="batch size for processing with Text Encoder / Text Encoderで処理するときのバッチサイズ")
parser.add_argument("--clip_skip", type=int, default=None,
help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いる(nは1以上)")
return parser
if __name__ == '__main__':
parser = setup_parser()
args = parser.parse_args()
interrogate(args)