1aurent commited on
Commit
54bdf7d
1 Parent(s): d4b0baf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -0
README.md CHANGED
@@ -417,4 +417,61 @@ configs:
417
  data_files:
418
  - split: train
419
  path: data/train-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
420
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
417
  data_files:
418
  - split: train
419
  path: data/train-*
420
+ task_categories:
421
+ - image-classification
422
+ language:
423
+ - en
424
+ tags:
425
+ - princeton
426
+ pretty_name: SUN397
427
+ size_categories:
428
+ - 100K<n<1M
429
+ paperswithcode_id: sun397
430
+ multilinguality:
431
+ - monolingual
432
+ annotations_creators:
433
+ - expert-generated
434
  ---
435
+
436
+ # Scene UNderstanding 397 — SUN397
437
+
438
+ [![](https://vision.princeton.edu/projects/2010/SUN/sun_mosaic_logo.jpg)](https://vision.princeton.edu/projects/2010/SUN/)
439
+
440
+ ## Dataset Description
441
+
442
+ - **Homepage:** [SUN Database: Scene Categorization Benchmark](https://vision.princeton.edu/projects/2010/SUN/)
443
+ - **Repository:** [github:CSAILVision/ADE20K](https://github.com/CSAILVision/ADE20K)
444
+
445
+ ## Description
446
+
447
+ Scene categorization is a fundamental problem in computer vision.
448
+ However, scene understanding research has been constrained by the limited scope of currently-used databases which do not capture the full variety of scene categories.
449
+ Whereas standard databases for object categorization contain hundreds of different classes of objects, the largest available dataset of scene categories contains only 15 classes.
450
+ In this paper we propose the extensive Scene UNderstanding (SUN) database that contains 899 categories and 130,519 images.
451
+ We use 397 well-sampled categories to evaluate numerous state-of-the-art algorithms for scene recognition and establish new bounds of performance.
452
+ We measure human scene classification performance on the SUN database and compare this with computational methods.
453
+
454
+ ## Citations
455
+
456
+ ```bibtex
457
+ @inproceedings{5539970,
458
+ title = {SUN database: Large-scale scene recognition from abbey to zoo},
459
+ author = {Xiao, Jianxiong and Hays, James and Ehinger, Krista A. and Oliva, Aude and Torralba, Antonio},
460
+ year = 2010,
461
+ booktitle = {2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition},
462
+ volume = {},
463
+ number = {},
464
+ pages = {3485--3492},
465
+ doi = {10.1109/CVPR.2010.5539970},
466
+ keywords = {Sun;Large-scale systems;Layout;Humans;Image databases;Computer vision;Anthropometry;Bridges;Legged locomotion;Spatial databases}
467
+ }
468
+ @article{Xiao2014SUNDE,
469
+ title = {SUN Database: Exploring a Large Collection of Scene Categories},
470
+ author = {Jianxiong Xiao and Krista A. Ehinger and James Hays and Antonio Torralba and Aude Oliva},
471
+ year = 2014,
472
+ journal = {International Journal of Computer Vision},
473
+ volume = 119,
474
+ pages = {3--22},
475
+ url = {https://api.semanticscholar.org/CorpusID:10224573}
476
+ }
477
+ ```