Update README.md
Browse files
README.md
CHANGED
@@ -417,4 +417,61 @@ configs:
|
|
417 |
data_files:
|
418 |
- split: train
|
419 |
path: data/train-*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
417 |
data_files:
|
418 |
- split: train
|
419 |
path: data/train-*
|
420 |
+
task_categories:
|
421 |
+
- image-classification
|
422 |
+
language:
|
423 |
+
- en
|
424 |
+
tags:
|
425 |
+
- princeton
|
426 |
+
pretty_name: SUN397
|
427 |
+
size_categories:
|
428 |
+
- 100K<n<1M
|
429 |
+
paperswithcode_id: sun397
|
430 |
+
multilinguality:
|
431 |
+
- monolingual
|
432 |
+
annotations_creators:
|
433 |
+
- expert-generated
|
434 |
---
|
435 |
+
|
436 |
+
# Scene UNderstanding 397 — SUN397
|
437 |
+
|
438 |
+
[![](https://vision.princeton.edu/projects/2010/SUN/sun_mosaic_logo.jpg)](https://vision.princeton.edu/projects/2010/SUN/)
|
439 |
+
|
440 |
+
## Dataset Description
|
441 |
+
|
442 |
+
- **Homepage:** [SUN Database: Scene Categorization Benchmark](https://vision.princeton.edu/projects/2010/SUN/)
|
443 |
+
- **Repository:** [github:CSAILVision/ADE20K](https://github.com/CSAILVision/ADE20K)
|
444 |
+
|
445 |
+
## Description
|
446 |
+
|
447 |
+
Scene categorization is a fundamental problem in computer vision.
|
448 |
+
However, scene understanding research has been constrained by the limited scope of currently-used databases which do not capture the full variety of scene categories.
|
449 |
+
Whereas standard databases for object categorization contain hundreds of different classes of objects, the largest available dataset of scene categories contains only 15 classes.
|
450 |
+
In this paper we propose the extensive Scene UNderstanding (SUN) database that contains 899 categories and 130,519 images.
|
451 |
+
We use 397 well-sampled categories to evaluate numerous state-of-the-art algorithms for scene recognition and establish new bounds of performance.
|
452 |
+
We measure human scene classification performance on the SUN database and compare this with computational methods.
|
453 |
+
|
454 |
+
## Citations
|
455 |
+
|
456 |
+
```bibtex
|
457 |
+
@inproceedings{5539970,
|
458 |
+
title = {SUN database: Large-scale scene recognition from abbey to zoo},
|
459 |
+
author = {Xiao, Jianxiong and Hays, James and Ehinger, Krista A. and Oliva, Aude and Torralba, Antonio},
|
460 |
+
year = 2010,
|
461 |
+
booktitle = {2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition},
|
462 |
+
volume = {},
|
463 |
+
number = {},
|
464 |
+
pages = {3485--3492},
|
465 |
+
doi = {10.1109/CVPR.2010.5539970},
|
466 |
+
keywords = {Sun;Large-scale systems;Layout;Humans;Image databases;Computer vision;Anthropometry;Bridges;Legged locomotion;Spatial databases}
|
467 |
+
}
|
468 |
+
@article{Xiao2014SUNDE,
|
469 |
+
title = {SUN Database: Exploring a Large Collection of Scene Categories},
|
470 |
+
author = {Jianxiong Xiao and Krista A. Ehinger and James Hays and Antonio Torralba and Aude Oliva},
|
471 |
+
year = 2014,
|
472 |
+
journal = {International Journal of Computer Vision},
|
473 |
+
volume = 119,
|
474 |
+
pages = {3--22},
|
475 |
+
url = {https://api.semanticscholar.org/CorpusID:10224573}
|
476 |
+
}
|
477 |
+
```
|