Create Human-Embryo-Dataset.py
Browse files- Human-Embryo-Dataset.py +206 -0
Human-Embryo-Dataset.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import datasets
|
3 |
+
import pandas as pd
|
4 |
+
from pathlib import Path
|
5 |
+
from PIL import ImageFile
|
6 |
+
|
7 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
8 |
+
|
9 |
+
_URLS = {
|
10 |
+
"F-45": "https://zenodo.org/records/7912264/files/embryo_dataset_F-45.tar.gz",
|
11 |
+
"F-30": "https://zenodo.org/records/7912264/files/embryo_dataset_F-30.tar.gz",
|
12 |
+
"F-15": "https://zenodo.org/records/7912264/files/embryo_dataset_F-15.tar.gz",
|
13 |
+
"F0": "https://zenodo.org/records/7912264/files/embryo_dataset.tar.gz",
|
14 |
+
"F+15": "https://zenodo.org/records/7912264/files/embryo_dataset_F15.tar.gz",
|
15 |
+
"F+30": "https://zenodo.org/records/7912264/files/embryo_dataset_F30.tar.gz",
|
16 |
+
"F+45": "https://zenodo.org/records/7912264/files/embryo_dataset_F45.tar.gz",
|
17 |
+
"grades": "https://zenodo.org/records/7912264/files/embryo_dataset_grades.csv",
|
18 |
+
"annotations": "https://zenodo.org/records/7912264/files/embryo_dataset_annotations.tar.gz",
|
19 |
+
"time_elapsed": "https://zenodo.org/records/7912264/files/embryo_dataset_time_elapsed.tar.gz",
|
20 |
+
}
|
21 |
+
|
22 |
+
_EVENT_NAMES = [
|
23 |
+
"tPB2", "tPNa", "tPNf", "t2", "t3", "t4", "t5", "t6", "t7", "t8", "t9+", "tM", "tSB", "tB", "tEB", "tHB",
|
24 |
+
]
|
25 |
+
|
26 |
+
_GRADES = ["A", "B", "C", "NA"]
|
27 |
+
|
28 |
+
_DESCRIPTION = """
|
29 |
+
This dataset is composed of 704 videos, each recorded at 7 focal planes, accompanied by the annotations of 16 cellular events.
|
30 |
+
"""
|
31 |
+
|
32 |
+
_VERSION = datasets.Version("0.3.0")
|
33 |
+
|
34 |
+
_HOMEPAGE = "https://zenodo.org/record/7912264"
|
35 |
+
|
36 |
+
_LICENSE = "CC BY-NC-SA 4.0"
|
37 |
+
|
38 |
+
class HumanEmbryoTimelapse(datasets.GeneratorBasedBuilder):
|
39 |
+
|
40 |
+
def _info(self):
|
41 |
+
return datasets.DatasetInfo(
|
42 |
+
description=_DESCRIPTION,
|
43 |
+
version=_VERSION,
|
44 |
+
homepage=_HOMEPAGE,
|
45 |
+
license=_LICENSE,
|
46 |
+
features=datasets.Features(
|
47 |
+
{
|
48 |
+
"name": datasets.Value("string"),
|
49 |
+
"F-45": datasets.Sequence(datasets.Image()),
|
50 |
+
"F-30": datasets.Sequence(datasets.Image()),
|
51 |
+
"F-15": datasets.Sequence(datasets.Image()),
|
52 |
+
"F0": datasets.Sequence(datasets.Image()),
|
53 |
+
"F+45": datasets.Sequence(datasets.Image()),
|
54 |
+
"F+30": datasets.Sequence(datasets.Image()),
|
55 |
+
"F+15": datasets.Sequence(datasets.Image()),
|
56 |
+
"events": datasets.Sequence(
|
57 |
+
{
|
58 |
+
"name": datasets.ClassLabel(names=_EVENT_NAMES),
|
59 |
+
"frame_index_start": datasets.Value("uint16"),
|
60 |
+
"frame_index_stop": datasets.Value("uint16"),
|
61 |
+
},
|
62 |
+
),
|
63 |
+
"timeline": {
|
64 |
+
"frame_index": datasets.Sequence(datasets.Value("uint16")),
|
65 |
+
"time": datasets.Sequence(datasets.Value("float32")),
|
66 |
+
},
|
67 |
+
"grades": {
|
68 |
+
"TE": datasets.ClassLabel(names=_GRADES),
|
69 |
+
"ICM": datasets.ClassLabel(names=_GRADES),
|
70 |
+
}
|
71 |
+
}
|
72 |
+
),
|
73 |
+
)
|
74 |
+
|
75 |
+
def _split_generators(self, dl_manager):
|
76 |
+
"""Generate splits."""
|
77 |
+
|
78 |
+
# download and extract all files
|
79 |
+
directories = {
|
80 |
+
name: Path(dl_manager.download_and_extract(url))
|
81 |
+
for name, url in _URLS.items()
|
82 |
+
}
|
83 |
+
|
84 |
+
# get all subfolders of embryo_names_dir
|
85 |
+
embryo_names_dir = directories["F0"] / "embryo_dataset"
|
86 |
+
embryo_names = [x.name for x in embryo_names_dir.iterdir() if x.is_dir()]
|
87 |
+
|
88 |
+
return [
|
89 |
+
datasets.SplitGenerator(
|
90 |
+
name=datasets.Split.TRAIN,
|
91 |
+
gen_kwargs={
|
92 |
+
"embryo_names": embryo_names,
|
93 |
+
"directories": directories,
|
94 |
+
},
|
95 |
+
)
|
96 |
+
]
|
97 |
+
|
98 |
+
def _generate_examples(self, embryo_names, directories):
|
99 |
+
"""Generate images and labels for splits."""
|
100 |
+
|
101 |
+
# get grades for each embryo (name, TE, ICM)
|
102 |
+
pd_grades = pd.read_csv(directories["grades"], delimiter=',')
|
103 |
+
grades = {
|
104 |
+
row["video_name"]: {
|
105 |
+
"TE": row["TE"],
|
106 |
+
"ICM": row["ICM"],
|
107 |
+
}
|
108 |
+
for _, row in pd_grades.iterrows()
|
109 |
+
}
|
110 |
+
|
111 |
+
for index, embryo_name in enumerate(embryo_names):
|
112 |
+
|
113 |
+
# get events of the embryo (name, frame_index_start, frame_index_stop)
|
114 |
+
pd_events = pd.read_csv(directories["annotations"] / "embryo_dataset_annotations" / f"{embryo_name}_phases.csv", header=None)
|
115 |
+
events = [
|
116 |
+
{
|
117 |
+
"name": row[0],
|
118 |
+
"frame_index_start": row[1],
|
119 |
+
"frame_index_stop": row[2],
|
120 |
+
}
|
121 |
+
for _, row in pd_events.iterrows()
|
122 |
+
]
|
123 |
+
|
124 |
+
# get frame index and time
|
125 |
+
pd_time = pd.read_csv(directories["time_elapsed"] / "embryo_dataset_time_elapsed" / f"{embryo_name}_timeElapsed.csv")
|
126 |
+
timeline = {
|
127 |
+
"frame_index": pd_time["frame_index"].tolist(),
|
128 |
+
"time": pd_time["time"].tolist(),
|
129 |
+
}
|
130 |
+
|
131 |
+
# get images of the embryo, with focal plane -45
|
132 |
+
F_m45 = list(map(
|
133 |
+
lambda x: str(x),
|
134 |
+
sorted(
|
135 |
+
(directories["F-45"] / "embryo_dataset_F-45" / embryo_name).glob("*.jpeg"),
|
136 |
+
key=lambda x: int(x.stem.split("RUN")[-1]),
|
137 |
+
),
|
138 |
+
))
|
139 |
+
|
140 |
+
# get images of the embryo, with focal plane -30
|
141 |
+
F_m30 = list(map(
|
142 |
+
lambda x: str(x),
|
143 |
+
sorted(
|
144 |
+
(directories["F-30"] / "embryo_dataset_F-30" / embryo_name).glob("*.jpeg"),
|
145 |
+
key=lambda x: int(x.stem.split("RUN")[-1]),
|
146 |
+
),
|
147 |
+
))
|
148 |
+
|
149 |
+
# get images of the embryo, with focal plane -15
|
150 |
+
F_m15 = list(map(
|
151 |
+
lambda x: str(x),
|
152 |
+
sorted(
|
153 |
+
(directories["F-15"] / "embryo_dataset_F-15" / embryo_name).glob("*.jpeg"),
|
154 |
+
key=lambda x: int(x.stem.split("RUN")[-1]),
|
155 |
+
),
|
156 |
+
))
|
157 |
+
|
158 |
+
# get images of the embryo, with focal plane 0
|
159 |
+
F_zero = list(map(
|
160 |
+
lambda x: str(x),
|
161 |
+
sorted(
|
162 |
+
(directories["F0"] / "embryo_dataset" / embryo_name).glob("*.jpeg"),
|
163 |
+
key=lambda x: int(x.stem.split("RUN")[-1]),
|
164 |
+
),
|
165 |
+
))
|
166 |
+
|
167 |
+
# get images of the embryo, with focal plane +15
|
168 |
+
F_p15 = list(map(
|
169 |
+
lambda x: str(x),
|
170 |
+
sorted(
|
171 |
+
(directories["F+15"] / "embryo_dataset_F15" / embryo_name).glob("*.jpeg"),
|
172 |
+
key=lambda x: int(x.stem.split("RUN")[-1]),
|
173 |
+
),
|
174 |
+
))
|
175 |
+
|
176 |
+
# get images of the embryo, with focal plane +30
|
177 |
+
F_p30 = list(map(
|
178 |
+
lambda x: str(x),
|
179 |
+
sorted(
|
180 |
+
(directories["F+30"] / "embryo_dataset_F30" / embryo_name).glob("*.jpeg"),
|
181 |
+
key=lambda x: int(x.stem.split("RUN")[-1]),
|
182 |
+
),
|
183 |
+
))
|
184 |
+
|
185 |
+
# get images of the embryo, with focal plane +45
|
186 |
+
F_p45 = list(map(
|
187 |
+
lambda x: str(x),
|
188 |
+
sorted(
|
189 |
+
(directories["F+45"] / "embryo_dataset_F45" / embryo_name).glob("*.jpeg"),
|
190 |
+
key=lambda x: int(x.stem.split("RUN")[-1]),
|
191 |
+
),
|
192 |
+
))
|
193 |
+
|
194 |
+
yield index, {
|
195 |
+
"name": embryo_name,
|
196 |
+
"F-45": F_m45,
|
197 |
+
"F-30": F_m30,
|
198 |
+
"F-15": F_m15,
|
199 |
+
"F0": F_zero,
|
200 |
+
"F+15": F_p15,
|
201 |
+
"F+30": F_p30,
|
202 |
+
"F+45": F_p45,
|
203 |
+
"events": events,
|
204 |
+
"grades": grades[embryo_name],
|
205 |
+
"timeline": timeline,
|
206 |
+
}
|