Muennighoff
commited on
Commit
•
4fc574f
1
Parent(s):
f4175d6
Add
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +316 -0
- 4b284b84b10c4pyseed1/evaluation/4b284b84b10c4pyseed1_0_babi.json +22 -0
- 4b284b84b10c4pyseed1/evaluation/4b284b84b10c4pyseed1_1_babi.json +22 -0
- 4b284b84b10c4pyseed1/evaluation/4b284b84b10c4pyseed1_2_babi.json +22 -0
- 4b284b84b10c4pyseed1/evaluation/4b284b84b10c4pyseed1_3_babi.json +22 -0
- 4b284b84b10c4pyseed1/evaluation/4b284b84b10c4pyseed1_5_babi.json +22 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_0.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_1.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_2.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_3.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_4.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_5.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_0.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_1.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_2.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_3.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_4.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_5.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_0.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_1.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_2.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_3.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_4.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_5.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_0.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_1.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_2.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_3.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_4.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_5.json +1 -0
- 4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_0.jsonl +3 -0
- 4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_1.jsonl +3 -0
- 4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_2.jsonl +3 -0
- 4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_3.jsonl +3 -0
- 4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_4.jsonl +3 -0
- 4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_5.jsonl +3 -0
- 4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_0.jsonl +3 -0
- 4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_1.jsonl +3 -0
- 4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_2.jsonl +3 -0
- 4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_3.jsonl +3 -0
- 4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_4.jsonl +3 -0
- 4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_5.jsonl +3 -0
- 4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl +3 -0
- 4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl +3 -0
- 4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl +3 -0
- 4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl +3 -0
- 4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl +3 -0
- 4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl +3 -0
- 4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_0.jsonl +3 -0
- 4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_1.jsonl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,319 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*/evaluation/examples*jsonl filter=lfs diff=lfs merge=lfs -text
|
36 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
37 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
38 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
39 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
40 |
+
4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
41 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
42 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
43 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
44 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
45 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
46 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
47 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
48 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
49 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
50 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
51 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
52 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
53 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
54 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
55 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
56 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
57 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
58 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
59 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
60 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
61 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
62 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
63 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
64 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
65 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
66 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
67 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
68 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
69 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
70 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
71 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
72 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
73 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
74 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
75 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
76 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
77 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
78 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
79 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
80 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
81 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
82 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
83 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
84 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
85 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
86 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
87 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
88 |
+
4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
89 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
90 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
91 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
92 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
93 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
94 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
95 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
96 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
97 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
98 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
99 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
100 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
101 |
+
4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
102 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
103 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
104 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
105 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
106 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
107 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
108 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
109 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
110 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
111 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
112 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
113 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
114 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
115 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
116 |
+
4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
117 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
118 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
119 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
120 |
+
4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
121 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
122 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
123 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
124 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
125 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
126 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
127 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
128 |
+
4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
129 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
130 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
131 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
132 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
133 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
134 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
135 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
136 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
137 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
138 |
+
4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
139 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
140 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
141 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
142 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
143 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
144 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
145 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
146 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
147 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
148 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
149 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
150 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
151 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
152 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
153 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
154 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
155 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
156 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
157 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
158 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
159 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
160 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
161 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
162 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
163 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
164 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
165 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
166 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
167 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
168 |
+
4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
169 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
170 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
171 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
172 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
173 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
174 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
175 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
176 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
177 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
178 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
179 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
180 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
181 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
182 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
183 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
184 |
+
4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
185 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
186 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
187 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
188 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
189 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
190 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
191 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
192 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
193 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
194 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
195 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
196 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
197 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
198 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
199 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
200 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
201 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
202 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
203 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
204 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
205 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
206 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
207 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
208 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
209 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
210 |
+
4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
211 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
212 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
213 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
214 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
215 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
216 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
217 |
+
4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
218 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
219 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
220 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
221 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
222 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
223 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
224 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
225 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
226 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
227 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
228 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
229 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
230 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
231 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
232 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
233 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
234 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
235 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
236 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
237 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
238 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
239 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
240 |
+
4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
241 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
242 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
243 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
244 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
245 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
246 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
247 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
248 |
+
4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
249 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
250 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
251 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
252 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
253 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
254 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
255 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
256 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
257 |
+
4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
258 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
259 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
260 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
261 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
262 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
263 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
264 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
265 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
266 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
267 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
268 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
269 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
270 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
271 |
+
4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
272 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
273 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
274 |
+
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
275 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
276 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
277 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
278 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
279 |
+
4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
280 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
281 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
282 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
283 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
284 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
285 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
286 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
287 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
288 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
289 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
290 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
291 |
+
4b284b84b30c4pyseed2/evaluation/generation/examples.4b284b84b30c4pyseed2_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
292 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
293 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
294 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
295 |
+
4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
296 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
297 |
+
4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
298 |
+
4b284b84b10c4pyseed2/evaluation/generation/examples.4b284b84b10c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
299 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
300 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
301 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
302 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
303 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
304 |
+
4b284b84b10c4pyseed4/evaluation/generation/examples.4b284b84b10c4pyseed4_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
305 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
306 |
+
4b284b84b20c4pyseed4/evaluation/generation/examples.4b284b84b20c4pyseed4_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
307 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
308 |
+
4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
309 |
+
4b284b84b10c4pyseed3/evaluation/generation/examples.4b284b84b10c4pyseed3_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
310 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
311 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
312 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
313 |
+
4b284b84b30c4pyseed3/evaluation/generation/examples.4b284b84b30c4pyseed3_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
314 |
+
4b284b84b20c4pyseed1/evaluation/generation/examples.4b284b84b20c4pyseed1_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
315 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
316 |
+
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
317 |
+
4b284b84b20c4pyseed3/evaluation/generation/examples.4b284b84b20c4pyseed3_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
318 |
+
4b284b84b30c4pyseed1/evaluation/generation/examples.4b284b84b30c4pyseed1_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
319 |
+
*/*/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
320 |
+
4b284b84b30c4pyseed4/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
321 |
+
4b284b84b80c4pyseed2/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
322 |
+
4b284b84b10c4pyseed1/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
323 |
+
4b284b84b10c4pyseed3/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
324 |
+
4b284b84b20c4pyseed4/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
325 |
+
4b284b84b90c4pyseed1/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
326 |
+
4b284b84b90c4pyseed3/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
327 |
+
4b284b84b50c4pyseed2/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
328 |
+
4b284b84b60c4pyseed4/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
329 |
+
4b284b84b70c4pyseed2/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
330 |
+
4b284b84b10c4pyseed2/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
331 |
+
4b284b84b80c4pyseed1/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
332 |
+
4b284b84b80c4pyseed3/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
333 |
+
4b284b84b70c4pyseed4/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
334 |
+
4b284b84b40c4pyseed1/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
335 |
+
4b284b84b50c4pyseed4/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
336 |
+
4b284b84b60c4pyseed2/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
337 |
+
4b284b84b30c4pyseed1/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
338 |
+
4b284b84b10c4pyseed4/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
339 |
+
4b284b84b20c4pyseed1/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
340 |
+
4b284b84b20c4pyseed3/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
341 |
+
4b284b84b90c4pyseed4/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
342 |
+
4b284b84b40c4pyseed2/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
343 |
+
4b284b84b60c4pyseed1/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
344 |
+
4b284b84b60c4pyseed3/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
345 |
+
4b284b84b30c4pyseed2/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
346 |
+
4b284b84b80c4pyseed4/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
347 |
+
4b284b84b90c4pyseed2/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
348 |
+
4b284b84b50c4pyseed1/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
349 |
+
4b284b84b50c4pyseed3/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
350 |
+
4b284b84b70c4pyseed3/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
4b284b84b10c4pyseed1/evaluation/4b284b84b10c4pyseed1_0_babi.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"babi": {
|
4 |
+
"em": 0.0,
|
5 |
+
"em_stderr": 0.0
|
6 |
+
}
|
7 |
+
},
|
8 |
+
"versions": {
|
9 |
+
"babi": 0
|
10 |
+
},
|
11 |
+
"config": {
|
12 |
+
"model": "gpt2",
|
13 |
+
"model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers",
|
14 |
+
"num_fewshot": 0,
|
15 |
+
"batch_size": null,
|
16 |
+
"device": null,
|
17 |
+
"no_cache": true,
|
18 |
+
"limit": 3000,
|
19 |
+
"bootstrap_iters": 100000,
|
20 |
+
"description_dict": {}
|
21 |
+
}
|
22 |
+
}
|
4b284b84b10c4pyseed1/evaluation/4b284b84b10c4pyseed1_1_babi.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"babi": {
|
4 |
+
"em": 0.199,
|
5 |
+
"em_stderr": 0.007290453820280032
|
6 |
+
}
|
7 |
+
},
|
8 |
+
"versions": {
|
9 |
+
"babi": 0
|
10 |
+
},
|
11 |
+
"config": {
|
12 |
+
"model": "gpt2",
|
13 |
+
"model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers",
|
14 |
+
"num_fewshot": 1,
|
15 |
+
"batch_size": null,
|
16 |
+
"device": null,
|
17 |
+
"no_cache": true,
|
18 |
+
"limit": 3000,
|
19 |
+
"bootstrap_iters": 100000,
|
20 |
+
"description_dict": {}
|
21 |
+
}
|
22 |
+
}
|
4b284b84b10c4pyseed1/evaluation/4b284b84b10c4pyseed1_2_babi.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"babi": {
|
4 |
+
"em": 0.292,
|
5 |
+
"em_stderr": 0.008302709095597025
|
6 |
+
}
|
7 |
+
},
|
8 |
+
"versions": {
|
9 |
+
"babi": 0
|
10 |
+
},
|
11 |
+
"config": {
|
12 |
+
"model": "gpt2",
|
13 |
+
"model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers",
|
14 |
+
"num_fewshot": 2,
|
15 |
+
"batch_size": null,
|
16 |
+
"device": null,
|
17 |
+
"no_cache": true,
|
18 |
+
"limit": 3000,
|
19 |
+
"bootstrap_iters": 100000,
|
20 |
+
"description_dict": {}
|
21 |
+
}
|
22 |
+
}
|
4b284b84b10c4pyseed1/evaluation/4b284b84b10c4pyseed1_3_babi.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"babi": {
|
4 |
+
"em": 0.324,
|
5 |
+
"em_stderr": 0.008545896331848744
|
6 |
+
}
|
7 |
+
},
|
8 |
+
"versions": {
|
9 |
+
"babi": 0
|
10 |
+
},
|
11 |
+
"config": {
|
12 |
+
"model": "gpt2",
|
13 |
+
"model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers",
|
14 |
+
"num_fewshot": 3,
|
15 |
+
"batch_size": null,
|
16 |
+
"device": null,
|
17 |
+
"no_cache": true,
|
18 |
+
"limit": 3000,
|
19 |
+
"bootstrap_iters": 100000,
|
20 |
+
"description_dict": {}
|
21 |
+
}
|
22 |
+
}
|
4b284b84b10c4pyseed1/evaluation/4b284b84b10c4pyseed1_5_babi.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"babi": {
|
4 |
+
"em": 0.354,
|
5 |
+
"em_stderr": 0.008732320299092156
|
6 |
+
}
|
7 |
+
},
|
8 |
+
"versions": {
|
9 |
+
"babi": 0
|
10 |
+
},
|
11 |
+
"config": {
|
12 |
+
"model": "gpt2",
|
13 |
+
"model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers",
|
14 |
+
"num_fewshot": 5,
|
15 |
+
"batch_size": null,
|
16 |
+
"device": null,
|
17 |
+
"no_cache": true,
|
18 |
+
"limit": 3000,
|
19 |
+
"bootstrap_iters": 100000,
|
20 |
+
"description_dict": {}
|
21 |
+
}
|
22 |
+
}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_0.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.284309215506823, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.029833086509604305}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.06581911668836364, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.001350869684012805}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.3172061653272691, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004652086353059752}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.10244258452443039, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0018745218333798596}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.02872547580815573, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0008018335661056892}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.13571970653094373, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003259456655314051}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.044717276624656535, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0011638609756180738}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.0622329746960186, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0012407879166700445}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.3025393331950721, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0044598083185581104}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.09702667756798634, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0017265383378214521}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.061177793399579794, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0012852655539325787}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.29018534616085484, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004307476009615367}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.09491867829539585, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.001775810247231079}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_1.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.753805187803133, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.06617087138127505}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.16415427297886892, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005101621265674676}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.3369859621654897, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005253905893732299}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.18109300201332623, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004090221106346305}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.08962231920980905, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.003652794559796275}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.179093576791636, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0038003650408636133}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.09554456994272455, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.002836360406157026}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.14633173241616088, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004561222352471328}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.31098631813906064, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004771152313092668}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.16243696323937595, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0035339999120070865}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.14939741590780758, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.00464113354592472}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.3149542980060386, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004807984726838254}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.16553233071424595, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003604801229722386}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_2.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.7932674060025208, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.030981623711671676}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.16979256072547352, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005082164079217998}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.3554713624023758, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004883533769915491}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.19124926479296447, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004229154056037897}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.09157774507207324, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.003436105148073816}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.19015999561328903, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003709227050021704}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.10131144981946384, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0029085710229933676}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.1476683147887663, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004295885608543962}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.32627871757286087, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004378817143139272}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.16901753523040366, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003515650361264507}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.15294809039092577, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.004486762320273044}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.3318227977234109, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004447615633152609}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.17394029235992964, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0036594961734086984}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_3.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.8513001578324528, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.026740684968996915}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.1682074233922619, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.00500858635828189}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.35827045347689035, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0047237125785498015}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.18899031024139057, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004063095454932207}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.09147237522532128, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.003348677910977491}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.19208203447770358, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003568780102250434}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.10005533448149066, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.002723354331085578}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.14745670611923176, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004288564029853486}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.32945503386050456, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.00430176341284325}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.1676956313139649, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0034072621145858485}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.15247421609250705, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.004470035388946363}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.33518148762631234, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004338973715432066}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.17242524198036677, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003538649731275397}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_4.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.9861923448931026, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.06451187715847112}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.17551657242946475, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.00518436550875209}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.36715724181406534, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004737112336780039}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.19517152553929415, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004158564969560929}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.09748212020764499, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.003545806528867412}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.2016532698906794, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0037519961144571014}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.10592268302143613, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.002888099644857794}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.1533354125519617, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004409368563127759}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.33802875005319016, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004320230574983353}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.17334860222724158, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003517583711032378}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.16074613904282228, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0046803037433223995}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.34585417154412335, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004400674408465862}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.17995243917889453, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0037046640606234428}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_5.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 1.0276495922602185, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.04351925208896884}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.1857912306879972, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005456711062603829}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.3727786563840607, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004811268133569124}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.20344274210510788, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004377149753563969}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.10367866583006519, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0037422913783832666}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.2048240498962582, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003783202485492078}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.11115468658056626, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.003036992688342426}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.16249202574637664, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004682286684786112}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.34092053938711586, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004300994367226273}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.1799634484068292, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003677070537566347}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.17041235466942184, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.004942926799192775}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.34872315434327716, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0043703888860243964}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.1870872812570983, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003877065731634771}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_0.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.17790091868095817, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0021603958439972985}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.28767225722987566, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0029352879041788967}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.20368781100751032, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002068000366661119}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.04053806715598245, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0008830811951633252}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.06802940844958125, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.001590741774901635}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.046716868794861754, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0009706566212074418}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.12871570492003945, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0014382222386276713}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.21643319804515018, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002301502562645028}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.14924671186550809, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.00141048666429078}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.1650342719642491, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0020126516657929527}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.2674750388003852, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0027562633553659954}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.18900724598178428, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.001924609918596603}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 2.2503849050585125, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.051507727846378235}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_1.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.27393078815860783, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0038623203456685886}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.2597178454728387, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.003151219857377147}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.21511983140208174, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0021698987504195433}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.08126791051957892, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0024917008391937712}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.06812633213172745, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0016323029682680788}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.05708999278032344, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0012762093671854961}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.2116066951379208, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0033271798685739064}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.19381965988537161, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0024101880028630914}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.1605722253085775, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0016204785663363505}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.25730029161753404, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0036763324140579832}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.24378425315233523, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002975555660811828}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.2017459406813838, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0020465753159111125}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 3.4982309775393885, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.09222704336399924}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_2.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.2952493239632582, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003960984019635869}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.26017147617808556, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0030898471494932573}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.2235176724065316, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002197037373765131}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.09079158882750632, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0025346171837202776}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.07118247751799445, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0016684374732950987}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.061995678538271676, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0013413408864346255}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.23067990584344947, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.003390251609468385}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.19795924007057863, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0024239337694097465}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.1699086382724902, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0016802663528347446}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.2785874960007144, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0038306025826887855}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.2439739751120984, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0029217551928644968}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.20973532628833993, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002083876431215809}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 3.873352952970367, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.08602903997292226}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_3.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.2644793338559228, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.004300446011877091}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.20721505932505885, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0032596678260916894}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.1852380650589816, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002453688960096756}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.07962757766274792, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.002538837956533235}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.056697549727240754, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0015655044967252236}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.050854113940311155, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.001262646254201672}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.21055962380090806, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0036820307774536325}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.1594739896843766, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0025655960354455483}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.14274269415388388, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0018860937901053825}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.24962571404876155, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.004132046557404798}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.19448430427679694, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0030769199275888057}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.17393190478618795, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0023165981237423306}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 2.9199915076563157, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.050718023179781004}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_4.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.09332602866833148, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003570294101613068}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.06586871137800855, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0025026795468805797}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.06076697813953489, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0021300692037034092}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.02827058895658381, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0018246284253883897}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.017969796115762948, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0010669408876304014}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.016460544041963263, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0008881114872332711}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.07656431813455133, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.003063240688380635}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.052053276943651174, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0019951400763600037}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.04815869214862383, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.001697306692637545}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.08788804889171757, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0034049566118768337}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.061446683378615426, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002336121336344904}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.05680856447838402, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0020003560937323227}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 0.1067162813855955, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.01642553426435665}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_5.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.015805709131080613, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0016507735911678808}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.010404485275122482, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.001118878971854598}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.009722653883413835, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0009640011558515617}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.006066305176907762, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.000920658460289576}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.0033132551609063956, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0004935460868227713}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.0031577837444284164, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.00041844867000327934}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.01339410530484845, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.001457114304279022}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.008254165617272078, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0008698320604862179}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.007849160982570056, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0007775176130013305}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.015094524794108326, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.001595743806157447}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.009685717063570557, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0010375114498161015}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.009124669383155015, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0009073079813537541}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 7.489712738905427e-14, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 1.1260174383292979e-12}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_0.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 0.22005998147458544, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.0250487067503603}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.08455976142294155, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0009636491454169889}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.09545554351114534, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0010469871961522913}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.08614972753839216, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0008903909075822222}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.0050051907680722894, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.00039263575137459715}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.004726385658481872, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.00044633081826916894}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.004592446716382532, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0003834061963154109}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.0783514821082424, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0008032303128996655}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.08915486867281326, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0008718664066674497}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.08008359695112764, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0007239720189765483}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.07886133099839461, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0008836330878653256}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.08934859411128912, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.000977605386921654}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.08044995901414072, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0008173682710957769}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_1.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 13.800398344487716, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.15346177669430705}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.6135241484922318, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0030630851817342406}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.4790322546729597, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.003182294502893629}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.5123702282037764, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002443558170198136}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.30235076353444407, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.002646874306056597}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.2343703657609816, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002335598188230106}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.25032847605768066, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.002153114612123916}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.43955666108409125, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002945445598769829}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.3389986234208399, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0025731015700906183}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.3639720427770328, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0021984061431177555}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.49748024851751865, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.003135565492715848}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.3863857641705684, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0029130057687118465}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.4140785882669693, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002467350834842922}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_2.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 16.220114618030067, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.15289130928894384}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.6232512473842998, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0030165334823404376}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.5187486242536772, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0030737890642935535}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.5448820108889906, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002396410343480538}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.31849522619958753, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0026674426625603164}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.2634473671770624, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0024027183676086313}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.2764918747191911, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0022226866139742037}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.4460280977850625, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002883420399396016}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.3686322388682046, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0025883932571672094}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.3880623418406085, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002253572082462304}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.5111074159037895, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.003069948568226211}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.42402608322081503, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0028710060076752785}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.44605053351857943, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0024682627803923407}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_3.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 17.026332930226687, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.11903167676949462}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.6234800089627556, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.002985926892416307}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.5280368770938475, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002970293130350025}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.5527798242897692, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0023609895962880094}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.32294197782069145, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0026384279907428437}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.27292001136094557, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002435895120528307}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.2851915123694789, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0022547896451545688}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.4437004558544396, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002791137093343086}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.3753688881218395, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0026151098326306237}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.39286344410502555, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002271959169212471}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.5104930833963656, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0030114185668342584}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.43245455603275523, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0028697413631203587}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.4526273905509783, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0024727820067571224}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_4.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 17.558589903058714, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.19252630598122317}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.6273626409449821, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0030713302171131197}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.5294494567992365, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002956902303979277}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.5553921415579663, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002407231734357769}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.32719445044431117, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0027183018349157878}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.2758425630167494, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.00248527899121024}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.28884988764815905, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0023347534029499084}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.449533455998689, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002881175546971357}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.3784119333044511, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0025979004764086107}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.3972547497667789, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0023220786435570757}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.5181230901609982, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.003092242183416676}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.43804177668765465, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002897167034784455}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.4592067286169127, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0025419130908316176}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_5.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 17.466933689644232, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.18690187822599455}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.6269119709397524, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003021400454708049}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.531125474770964, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0029809653866374334}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.5562560609497972, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002398329952347352}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.32818979979206736, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0026868197179766846}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.2776619098810402, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002495991792698862}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.2902670144861217, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0023219039559393296}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.45068802079016396, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0028602873824156013}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.3808220315827243, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0026446980259427393}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.39907008563787416, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0023368919447988804}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.5193139266297329, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0030761759468207707}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.4395600438133579, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002883428534103374}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.4606227892947579, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0025300476536768424}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_0.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.1429593128198406, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0018591114338940178}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.3336991566205972, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004114441229614053}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.19577844561684796, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0023661323114514583}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.02737505019597676, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0009479284145870204}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.06737976814912207, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002358671989935531}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.03823209781440638, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0013087881969693176}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.10581308807893287, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.001322469794945021}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.24910808127348322, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0030950005330837695}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.145156122303775, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0016826927327189658}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.11175582176006449, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0014972830388992728}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.26293712421392873, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0035011677466440213}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.1533609850544498, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0019328001233590163}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 1.3834259801017654, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.0740802701072243}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_1.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.16522584334850784, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003233343006630082}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.2738597999200149, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.00400710601158638}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.18942796750148963, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.00282635944299824}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.032496424466021384, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0016335851701900109}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.05322149486917393, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002261216473133809}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.03681668414425123, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.001614740366905874}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.12598829667400124, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002526015434698146}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.20943225292183257, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0030896306306637806}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.1442650387130003, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0021578014797468447}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.1286748059113306, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.002558422865540148}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.21601653600118456, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.003388378859394739}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.14798185794949825, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0022622214421465074}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 1.4133140766200658, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.07412977244058566}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_2.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.20972653107102984, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003815224682299948}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.25750934761307187, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.00374716575474716}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.2128442344193703, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0031145638697046315}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.0425341860560324, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0020058542793671467}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.04887724768581428, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002065454873092856}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.04199512085291508, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.00182532086722488}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.15687035055102957, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002917332672132936}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.19231969888863373, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0028432386523952607}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.15887796321938907, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0023655473767136056}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.16018034033217715, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.00291195594553355}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.19997130764127558, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0031005093828670336}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.16335387015577893, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0024148406207269127}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 1.7810250018857277, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.10532591862898125}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_3.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.21376468358942274, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0041326732533511264}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.23417136837123367, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.003943124645233322}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.2071889269059653, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.003440607121884097}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.044594473304136434, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0021819372373260305}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.0465766681204507, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0020811174284958464}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.04244649755795357, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.001958678091231855}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.16128163716269617, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.003232919903071769}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.1771979928014555, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.003091898160632376}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.15630878580902802, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002700606481726682}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.1639173241682711, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.003246670707428661}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.18214281746105063, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.003263598548597285}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.15956178080004038, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0027518298470148683}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 2.011211386735581, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.17250343585439765}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_4.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.0638565356976348, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003877414171497479}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.05760213523017414, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0033986796920877156}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.05420653615827253, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0030939599681383658}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.010373881118038586, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0010534404229828778}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.01042257701890787, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0010417332851091305}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.009504763442679623, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0009300238181360828}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.048044128458970055, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0029962571996274955}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.04255325347407478, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002495080218318238}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.040027122876600374, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002259653076158055}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.04939643995328391, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.003054559286533746}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.04473517011374622, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0026689496471047707}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.041566263452711256, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0023485349548759424}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 0.17312487940256435, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.029925074339360477}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/agg.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_5.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.002336168157769887, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0006890847696356748}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.0018688139530059714, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0005476439839497603}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.002039646408478482, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0005953236798957056}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.0001008979921299566, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 7.131502741691525e-05}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 6.493506493506492e-05, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 4.5969907005320445e-05}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 7.895668273026765e-05, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 5.584006489039512e-05}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.001656834704909943, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.000482744249190715}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.0013296876690360795, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0003919607933712566}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.0014470827826313995, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0004202041853790085}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.001656834704909943, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0004774384132496309}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.0013335860005501915, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.00038928213049580857}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.0014494601434993262, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.000416339406572967}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 1.4654804656090614e-40, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 8.086438720843712e-34}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b10c4pyseed1/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_0.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a55b7e1a7309bbad1051a38c730fa4a40ba1dfe2d1f603494b7837a08beab81f
|
3 |
+
size 4241257
|
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_1.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3eb026c3065e91c2688b3dfd5c7dd89553c4b0af88dfabe1236ae6216d112e7
|
3 |
+
size 4628751
|
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_2.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0f18c8d5dbf9a0e44a19cdd4cffedc4959d55f199ade76868534fc954b66095
|
3 |
+
size 5575983
|
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_3.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4945ab7e8d5a3cc9cd1fd1ae71a61e32ee0a56fb37f890ef345b50536edab3c
|
3 |
+
size 6500061
|
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_4.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e0c90734b7db61bf9a44a7866e1c268e2fab4edd79535fa8c748adfb3932a72
|
3 |
+
size 7385078
|
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-web_nlg_en_PALM_prompt_5.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8615cf1a0f9b7d7114a53962e6af7b1d030835310f9840c4f90087ac155c411
|
3 |
+
size 8266221
|
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_0.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb91204701273879cb969c70eedd9fcc3e74966455fb2bf1592ee64b8f2bc8bd
|
3 |
+
size 7669546
|
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_1.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:946bee693e1b8a955860e29a3f17b20b07877fb7905e7dbfef4c2752f6cb17ad
|
3 |
+
size 13080806
|
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_2.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:924188960156325c884b06653c33ccb2914d1d2b754ac00db28840e12897c706
|
3 |
+
size 18658212
|
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_3.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e91c983c441db6405e644eeda5df40b5b07c7f7a9a7d043a7818fbfc4e8ab421
|
3 |
+
size 24094604
|
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_4.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ecedb8c4c3a358c650262729e1a423df09e86d0f0fdd3674a8068a56d6c628d
|
3 |
+
size 29384997
|
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_GEM-wiki_lingua_en_tldr_en_5.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ad398027b51cf2e494224e61a4bc26cbb159c59ba7fc508d335eb118a4b80a3
|
3 |
+
size 34784220
|
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad0adf4c04059157c235fd41d55d22313297c24b46fb64b9c68f32e8dd33927f
|
3 |
+
size 4311412
|
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45b2aabe6dc326da7d766cd64fbe34e2dd700ad02c974baf1050ae0a0bb51a61
|
3 |
+
size 5010132
|
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f579177d9fd408e7fd4dc369928a37abdeed449304b9acd4b5b26283cc262c4c
|
3 |
+
size 6113230
|
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f6c486876f45bf9962c85d182c3718f82002ebbdf5a32395d486b5172dfac32
|
3 |
+
size 7199304
|
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16457980d4dc172c73b763d883b9aaed32117a59d4d0ba44e57cce56ef1afcdd
|
3 |
+
size 8278730
|
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc60fd28b3a37d732710ccaeb9ba25adfd51d1e76ace05753f3b3b7424da68db
|
3 |
+
size 9366942
|
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_0.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b8ecd6fef6620e8d5ca95612c76cccbb1aa5b77790548f28ce3ac2c0db596f9
|
3 |
+
size 2830134
|
4b284b84b10c4pyseed1/evaluation/generation/examples.4b284b84b10c4pyseed1_gem_xsum_article_DOC_summary_1.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6d31cbcfdabb425da087dcf1cc8d3e7fd696c2cdc56c6f4139ebddc791e0ca5
|
3 |
+
size 5029465
|