Uploading PPO LunarLander-v2 trained agent
Browse files- README.md +3 -29
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +21 -21
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
@@ -30,34 +30,8 @@ TODO: Add your code
|
|
30 |
|
31 |
|
32 |
```python
|
33 |
-
import
|
34 |
-
|
35 |
-
from huggingface_sb3 import load_from_hub, package_to_hub, push_to_hub
|
36 |
-
from huggingface_hub import notebook_login # To log to our Hugging Face account to be able to upload models to the Hub.
|
37 |
-
|
38 |
-
from stable_baselines3 import PPO
|
39 |
-
from stable_baselines3.common.evaluation import evaluate_policy
|
40 |
-
from stable_baselines3.common.env_util import make_vec_env
|
41 |
-
|
42 |
-
# Create the environment
|
43 |
-
env = make_vec_env('LunarLander-v2', n_envs=16)
|
44 |
-
|
45 |
-
model = PPO(
|
46 |
-
policy = 'MlpPolicy',
|
47 |
-
env = env,
|
48 |
-
n_steps = 1024,
|
49 |
-
batch_size = 64,
|
50 |
-
n_epochs = 4,
|
51 |
-
gamma = 0.999,
|
52 |
-
gae_lambda = 0.98,
|
53 |
-
ent_coef = 0.01,
|
54 |
-
verbose=1)
|
55 |
-
|
56 |
-
# Train it for 2,000,000 timesteps
|
57 |
-
model.learn(total_timesteps=2000000)
|
58 |
-
# Save the model
|
59 |
-
model_name = "ppo-LunarLander-v2"
|
60 |
-
model.save(model_name)
|
61 |
|
62 |
...
|
63 |
```
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 295.51 +/- 20.94
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
30 |
|
31 |
|
32 |
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
...
|
37 |
```
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcef0716d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcef0716dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcef0716e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcef0716ee0>", "_build": "<function ActorCriticPolicy._build at 0x7fcef0716f70>", "forward": "<function ActorCriticPolicy.forward at 0x7fcef069d040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcef069d0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcef069d160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcef069d1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcef069d280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcef069d310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcef0715420>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671971488126618732, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqqmz0U0o+6a5tWs1vWca7PgS27l/yxMwAAgD8AAIA/mlmcOx4ApT8sMzQ96+cJv0hVG73hgz29AAAAAAAAAABmFLg8PNiuP4apnD65Mru+JmxiPDfnuz0AAAAAAAAAAPOHnz0cxbw/tqkLP9A6cD0FJk89tL+NPgAAAAAAAAAAjWs7vtyszz4gq1A+YfnOvgclK73Y7gw+AAAAAAAAAADax5y9l/mNP/Kvdb5ZSQC/TEM9vl68Dr4AAAAAAAAAAE08Ij32VF26mLXoOvPQ9jUNO6y6gXAIugAAgD8AAIA/wGcAPoioeD9SRJc9HHkJv0AePD5uMDk9AAAAAAAAAADAiLq9Xfi0P1XDl74UrcO+W4qNvsN+Mr4AAAAAAAAAAJrSzLzXZjg+QBBVPuON2L7NB+09tU46vQAAAAAAAAAAAJmUPESjrz8YbBk/EcYZv4iFbLxSAF+9AAAAAAAAAACa+wA8n9Oduyq/gL776Hm+nFlKvD5vOj8AAIA/AACAP2ZRaL2sR5c/BaAtvmsbAr+lCUu+XlYRvgAAAAAAAAAA5p1KvTtirD+aM4++r+LBvoi+8L2qFHC+AAAAAAAAAADzWpe9iAGKPhYuMz4tNLq+fzIgPpYAlTwAAAAAAAAAAM09Xz123U683tZtvG17Bz32jKM8LqKkOAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqWdBKO8AdECUhpRSlIwBbJRL94wBdJRHQKZ1syeI2wV1fZQoaAZoCWgPQwita7Qc6HNzQJSGlFKUaBVL1GgWR0CmdbL8R+SbdX2UKGgGaAloD0MIvyhBf+FIckCUhpRSlGgVS9loFkdApnW1W4mTknV9lChoBmgJaA9DCPilft7U629AlIaUUpRoFUvSaBZHQKZ15TVlPJt1fZQoaAZoCWgPQwhp/S0BuPRxQJSGlFKUaBVL02gWR0Cmdg4N7SiNdX2UKGgGaAloD0MI1v85zBclckCUhpRSlGgVS+hoFkdApnZU/KQq7XV9lChoBmgJaA9DCHrgY7BiUnJAlIaUUpRoFUvZaBZHQKZ2WCPIXCV1fZQoaAZoCWgPQwhOK4VArv9wQJSGlFKUaBVL1GgWR0CmdqZYYBNmdX2UKGgGaAloD0MIz9kCQutwcECUhpRSlGgVS+1oFkdApncT3oLXtnV9lChoBmgJaA9DCO0t5XwxFHFAlIaUUpRoFUvoaBZHQKZ3FBeHBUJ1fZQoaAZoCWgPQwihoBSt3GJzQJSGlFKUaBVL0GgWR0Cmd4hsZYPodX2UKGgGaAloD0MISdi3k8gZcECUhpRSlGgVS/BoFkdApned0eU6gnV9lChoBmgJaA9DCJkOnZ53s25AlIaUUpRoFUvmaBZHQKZ3wPhAGB51fZQoaAZoCWgPQwjZCS/BadBwQJSGlFKUaBVL2WgWR0CmeCOw5eZ5dX2UKGgGaAloD0MIbHnletvybkCUhpRSlGgVS+ZoFkdApng7KLbYb3V9lChoBmgJaA9DCIMWEjC6cnNAlIaUUpRoFUvDaBZHQKZ4Q1+AmRh1fZQoaAZoCWgPQwg+zcmLDFFyQJSGlFKUaBVL7mgWR0CmeHnyEtdzdX2UKGgGaAloD0MI4UBIFrABdECUhpRSlGgVS9ZoFkdApniDcdo373V9lChoBmgJaA9DCI1/n3GhQnBAlIaUUpRoFUvdaBZHQKZ47/PPcBV1fZQoaAZoCWgPQwjGaYgqfEFvQJSGlFKUaBVL62gWR0CmePdZ7ojfdX2UKGgGaAloD0MI6X5OQb4Cc0CUhpRSlGgVS85oFkdApnkIHTqjanV9lChoBmgJaA9DCDaxwFc0SHFAlIaUUpRoFUvWaBZHQKZ5dQu27Wd1fZQoaAZoCWgPQwhh4o+iDsNxQJSGlFKUaBVNBAFoFkdApnm8FUyYX3V9lChoBmgJaA9DCAIrhxZZYHFAlIaUUpRoFUvQaBZHQKZ5zGp++dt1fZQoaAZoCWgPQwgL8N3mDRhzQJSGlFKUaBVL3mgWR0CmgQHCXQdCdX2UKGgGaAloD0MIQlw5e6d0cUCUhpRSlGgVS9xoFkdApoGlXzUZvXV9lChoBmgJaA9DCP6bFyd+MXJAlIaUUpRoFUvzaBZHQKaBvEroW591fZQoaAZoCWgPQwiTisban/1zQJSGlFKUaBVL9WgWR0CmgdcjiXIEdX2UKGgGaAloD0MIUiegiTCCckCUhpRSlGgVS9NoFkdApoHpZIQOF3V9lChoBmgJaA9DCLAfYoMF+29AlIaUUpRoFUvTaBZHQKaCSYmb9ZR1fZQoaAZoCWgPQwiWzRySWg5xQJSGlFKUaBVL2mgWR0CmglfPPcBVdX2UKGgGaAloD0MIfSB55xCXc0CUhpRSlGgVS+1oFkdApoJf0yxiX3V9lChoBmgJaA9DCCzYRjyZ03BAlIaUUpRoFU2yAWgWR0CmgmcJ+lTFdX2UKGgGaAloD0MIDR07qARXcUCUhpRSlGgVS/ZoFkdApoJ0+JP69HV9lChoBmgJaA9DCD1DOGZZfHJAlIaUUpRoFUvSaBZHQKaCrrZ8KHB1fZQoaAZoCWgPQwg8wJMWLn1xQJSGlFKUaBVLy2gWR0Cmgq5y2hIwdX2UKGgGaAloD0MIX3zRHu9JcUCUhpRSlGgVS9NoFkdApoK6SFGoaXV9lChoBmgJaA9DCAcmN4qsiXFAlIaUUpRoFUvLaBZHQKaDDvYvnKZ1fZQoaAZoCWgPQwjMzw1NmWtyQJSGlFKUaBVLymgWR0Cmg01CPZIydX2UKGgGaAloD0MI7pV5q24mc0CUhpRSlGgVS8hoFkdApoNV0tAcDXV9lChoBmgJaA9DCEZgrG9gonFAlIaUUpRoFUvkaBZHQKaD08xsVL11fZQoaAZoCWgPQwhtWb4uw6txQJSGlFKUaBVL2GgWR0CmhJbWd3B6dX2UKGgGaAloD0MIiLmkajtrcUCUhpRSlGgVS+1oFkdApoSa3PRiPXV9lChoBmgJaA9DCF1PdF34ZXNAlIaUUpRoFUvlaBZHQKaElnkDIR11fZQoaAZoCWgPQwhQNXo1wLtyQJSGlFKUaBVLzWgWR0CmhNZ2yLQ5dX2UKGgGaAloD0MITtAmh89uc0CUhpRSlGgVS+9oFkdApoTWtr9ETnV9lChoBmgJaA9DCHB4QUQqrXBAlIaUUpRoFUvUaBZHQKaFAVt4zJp1fZQoaAZoCWgPQwjfTiLC/6FyQJSGlFKUaBVL1WgWR0CmhRtqYZ2qdX2UKGgGaAloD0MIzjeie5b0ckCUhpRSlGgVS+JoFkdApoUpCngpB3V9lChoBmgJaA9DCIAMHTsolG5AlIaUUpRoFUvRaBZHQKaFVyNn5BV1fZQoaAZoCWgPQwiitg2joEtzQJSGlFKUaBVL4WgWR0CmhYSBClabdX2UKGgGaAloD0MIfgIoRta0ckCUhpRSlGgVS/loFkdApoWE/t6X0HV9lChoBmgJaA9DCDYDXJCtLnFAlIaUUpRoFUvjaBZHQKaFisasIVx1fZQoaAZoCWgPQwjnNAu0OwpwQJSGlFKUaBVL2mgWR0CmhdHi3ocJdX2UKGgGaAloD0MIKLou/GC6b0CUhpRSlGgVS+BoFkdApoYkv4/NaHV9lChoBmgJaA9DCEHw+Pbup3BAlIaUUpRoFUvsaBZHQKaGUthd+od1fZQoaAZoCWgPQwh+xK9YgzZxQJSGlFKUaBVLzmgWR0CmhniMPz4DdX2UKGgGaAloD0MIoWmJlVGPb0CUhpRSlGgVS9RoFkdApodZu/Dcd3V9lChoBmgJaA9DCNHpeTeWsHFAlIaUUpRoFUvaaBZHQKaHb2Cdz4l1fZQoaAZoCWgPQwj5vyMqVBh0QJSGlFKUaBVLzGgWR0Cmh4FJg9eQdX2UKGgGaAloD0MIHekMjHyNckCUhpRSlGgVS89oFkdApoeOhXbM5nV9lChoBmgJaA9DCOYeEr73HXBAlIaUUpRoFUvlaBZHQKaHnSHdoFp1fZQoaAZoCWgPQwguqkVEMa1uQJSGlFKUaBVL0WgWR0Cmh8MfaHsUdX2UKGgGaAloD0MIBkZe1kTdckCUhpRSlGgVS8toFkdApofWtwJgLXV9lChoBmgJaA9DCCocQSoF63FAlIaUUpRoFUvSaBZHQKaH4OdXko51fZQoaAZoCWgPQwhMVdri2kNwQJSGlFKUaBVLzmgWR0CmiDppN9H+dX2UKGgGaAloD0MIgxYSMLrpcUCUhpRSlGgVS+poFkdApohwA+6iCnV9lChoBmgJaA9DCLH34ot2N25AlIaUUpRoFUvGaBZHQKaIeygPEsJ1fZQoaAZoCWgPQwjk9zb9WS5zQJSGlFKUaBVL42gWR0CmiIwb+98JdX2UKGgGaAloD0MIzeSbbe7EcUCUhpRSlGgVS+loFkdApoiayfL9uXV9lChoBmgJaA9DCCcR4V8ED3FAlIaUUpRoFUvUaBZHQKaI97/n4fx1fZQoaAZoCWgPQwhP5bSnZFpyQJSGlFKUaBVLx2gWR0CmiP2v0RODdX2UKGgGaAloD0MIsRh1rb2KUECUhpRSlGgVS4toFkdApolcDSw4bXV9lChoBmgJaA9DCKr0E84uYXFAlIaUUpRoFUvjaBZHQKaJepkwvg51fZQoaAZoCWgPQwgVNgNckEByQJSGlFKUaBVL02gWR0CmijO14Pf9dX2UKGgGaAloD0MIpREz+3z3cUCUhpRSlGgVS9loFkdApoqkUGmk33V9lChoBmgJaA9DCPQ1y2WjkHFAlIaUUpRoFUvYaBZHQKaKufh/Aj91fZQoaAZoCWgPQwjadW9FopZxQJSGlFKUaBVL+WgWR0Cmit0Fr2xqdX2UKGgGaAloD0MIzJpY4CskckCUhpRSlGgVTQYBaBZHQKaK7gYxcml1fZQoaAZoCWgPQwjEsS5uo4VJQJSGlFKUaBVLkmgWR0CmiwKJuVHGdX2UKGgGaAloD0MIaTum7koVcUCUhpRSlGgVS+toFkdAposMj/uLJnV9lChoBmgJaA9DCPHVjuJcf3FAlIaUUpRoFUveaBZHQKaLP51vETB1fZQoaAZoCWgPQwjsaYe/JuFvQJSGlFKUaBVLzWgWR0Cmi2D7qIJrdX2UKGgGaAloD0MI3iBaK5qlcUCUhpRSlGgVS9hoFkdApotnyGzrvHV9lChoBmgJaA9DCK8I/reSCW5AlIaUUpRoFUvcaBZHQKaLaz+FUQ11fZQoaAZoCWgPQwgmVHB4AUNyQJSGlFKUaBVL5mgWR0Cmi6WSU1Q7dX2UKGgGaAloD0MIgCxEh8AncECUhpRSlGgVTTABaBZHQKaLpBxgiNd1fZQoaAZoCWgPQwjLEp1lFi5wQJSGlFKUaBVL62gWR0CmjB9Htnf3dX2UKGgGaAloD0MInbzIBDwNdECUhpRSlGgVS+toFkdApoyZVn27F3V9lChoBmgJaA9DCP9Cjxh9r3NAlIaUUpRoFUv8aBZHQKaMtM7lq8F1fZQoaAZoCWgPQwjx9iAEJE9zQJSGlFKUaBVL0WgWR0CmjPUHY6GQdX2UKGgGaAloD0MICAYQPlQrcUCUhpRSlGgVS8xoFkdApo1KYTj//HV9lChoBmgJaA9DCGYtBaS9D3FAlIaUUpRoFUvbaBZHQKaN5yvs7dV1fZQoaAZoCWgPQwirsYS18YNwQJSGlFKUaBVL5WgWR0CmjfjEm6XjdX2UKGgGaAloD0MISvCGNOoNcECUhpRSlGgVS/NoFkdApo37j/+85HV9lChoBmgJaA9DCFOwxtk0zHBAlIaUUpRoFUvzaBZHQKaOG4x1xKh1fZQoaAZoCWgPQwgJbTmX4q1zQJSGlFKUaBVLz2gWR0CmjihLwnYydX2UKGgGaAloD0MIb0vkgrOgc0CUhpRSlGgVS9toFkdApo4pF/hESnV9lChoBmgJaA9DCLFQa5p3uHNAlIaUUpRoFUvXaBZHQKaOOuanaWZ1fZQoaAZoCWgPQwgTLA5nvtNxQJSGlFKUaBVL82gWR0CmjkZFG5MDdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 740, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8893524d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8893524dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8893524e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8893524ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f8893524f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f889352a040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f889352a0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f889352a160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f889352a1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f889352a280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f889352a310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f88935233f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671987619158904062, "learning_rate": 0.0004, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Ojbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI2n2j1Iy4K6NukSOCb/SDPbD4E6bdcptwAAAAAAAAAA2rwJviCshT/ZF8m+FZRVv06ygL6xwkO+AAAAAAAAAAA6vyY+9jF/P6R/pT778Bu/L9mfPqSASD4AAAAAAAAAAO3BQ74sN+Q+zxEbPZeXFr+KZJq+6N6SPQAAAAAAAAAAZu4+OykgabrAKOE6cSnRNUBw9TlbLwS6AACAPwAAgD9OLZe+k7wkPzvZfb2Ohie/roHnvlaPZj0AAAAAAAAAAFoB6D13lt8+TOczvrrPCr+kSyw+th7SvQAAAAAAAAAA5hwQPUg/3roGNka8M9eTPAhajjt2BYC9AACAPwAAgD9mSKc8C5PhPQKnYr0/k8W+Msg5PR6R4r0AAAAAAAAAAEbjXT5TA4o/AuPmPn+z3r5UvLk+NjaOPgAAAAAAAAAATdtvvUM9MLz1iVI+Ab2MPUmrJL3lMWw8AACAPwAAgD/AvI69hH04P9+qyTydlEO/vwMQvpn0oj0AAAAAAAAAAJqlDD1Iu4m6yCW4tk1b9DD1z0+7BhXUNQAAgD8AAIA/ZvgaveAhhD96JSK+wyaAvymcML3O8ye9AAAAAAAAAACAILG9dA9VPrYbJz6HEwi/qJ7ZvRx8Ez4AAAAAAAAAAJoRCj1cI2q6ansbvFRt4jhVjk26/Q1PuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF0ompzaCckCUhpRSlIwBbJRLuowBdJRHQMBp9Cx/ust1fZQoaAZoCWgPQwiZSdQL/kBxQJSGlFKUaBVLtGgWR0DAafO0Xxe+dX2UKGgGaAloD0MIZOlDF9Ric0CUhpRSlGgVS9hoFkdAwGn/ThHby3V9lChoBmgJaA9DCCANp8wN3XFAlIaUUpRoFUvgaBZHQMBqAqPfbbl1fZQoaAZoCWgPQwghdxGmKB9zQJSGlFKUaBVLqGgWR0DAagn4oJAudX2UKGgGaAloD0MIhxqFJDO3cECUhpRSlGgVS7VoFkdAwGolIg/1QXV9lChoBmgJaA9DCARxHk5gU3JAlIaUUpRoFUvZaBZHQMBqL9XDFZR1fZQoaAZoCWgPQwggnE8d68pyQJSGlFKUaBVLqGgWR0DAakloBaLXdX2UKGgGaAloD0MIbZBJRo52ckCUhpRSlGgVS9FoFkdAwGpUQaJhv3V9lChoBmgJaA9DCETEzakkNnNAlIaUUpRoFUvXaBZHQMBqjL0J4Sp1fZQoaAZoCWgPQwjYnINnAqxyQJSGlFKUaBVLy2gWR0DAap/XXiBHdX2UKGgGaAloD0MIfIFZoUjqcUCUhpRSlGgVS6xoFkdAwGqiJemelXV9lChoBmgJaA9DCPWEJR5Q6nJAlIaUUpRoFUvJaBZHQMBqpES/TLJ1fZQoaAZoCWgPQwjC3sSQnPFxQJSGlFKUaBVLxWgWR0DAaqjOTq0MdX2UKGgGaAloD0MIE0azsj1pcUCUhpRSlGgVS8hoFkdAwGq4rCm/FnV9lChoBmgJaA9DCJIhx9bzGXJAlIaUUpRoFUvGaBZHQMBqxamGdqd1fZQoaAZoCWgPQwgOu+8YHptwQJSGlFKUaBVLsWgWR0DAatvxUedTdX2UKGgGaAloD0MI7QxTW2o/c0CUhpRSlGgVTRMBaBZHQMBq88iwB5p1fZQoaAZoCWgPQwjbwvNScfNyQJSGlFKUaBVLr2gWR0DAavYFcIJJdX2UKGgGaAloD0MIQUgWMEFMdECUhpRSlGgVS9poFkdAwGr3p5/smnV9lChoBmgJaA9DCCNMUS4NbXFAlIaUUpRoFUu8aBZHQMBrD11nuiN1fZQoaAZoCWgPQwgYITzaeLJxQJSGlFKUaBVLmmgWR0DAbcLVWjoIdX2UKGgGaAloD0MIrimQ2dnKcECUhpRSlGgVS7FoFkdAwG3JviLl3nV9lChoBmgJaA9DCP+VlSZl/3FAlIaUUpRoFUulaBZHQMBt2HdoFmp1fZQoaAZoCWgPQwj5n/zd+y1yQJSGlFKUaBVLyWgWR0DAbfenMt9QdX2UKGgGaAloD0MIRRFStzOgcUCUhpRSlGgVS7toFkdAwG3/l7MPjHV9lChoBmgJaA9DCAR0X87s8WRAlIaUUpRoFU3oA2gWR0DAbgcujASGdX2UKGgGaAloD0MI5E7pYL14ckCUhpRSlGgVS95oFkdAwG4LAk9lmXV9lChoBmgJaA9DCJJB7iJMM0ZAlIaUUpRoFUuKaBZHQMBuDmwzLwF1fZQoaAZoCWgPQwiLcJNRpXVzQJSGlFKUaBVLzWgWR0DAbhq4e9zwdX2UKGgGaAloD0MICFqBISuickCUhpRSlGgVS7hoFkdAwG4c0k4WDnV9lChoBmgJaA9DCAaeew+XbW9AlIaUUpRoFUujaBZHQMBuIYk3S8d1fZQoaAZoCWgPQwgDzHwHv6JyQJSGlFKUaBVLxGgWR0DAbjt76YVqdX2UKGgGaAloD0MIhbAaS1ifcECUhpRSlGgVS6toFkdAwG48ZtvXLHV9lChoBmgJaA9DCC5Tk+BNaXBAlIaUUpRoFUuYaBZHQMBuV1FH8TB1fZQoaAZoCWgPQwiY2lIHOcRyQJSGlFKUaBVLumgWR0DAboP4REncdX2UKGgGaAloD0MIsKpefudOc0CUhpRSlGgVS9BoFkdAwG6Fvx6OYXV9lChoBmgJaA9DCEgzFk3nonBAlIaUUpRoFUuxaBZHQMBuqjFId2h1fZQoaAZoCWgPQwiP4bGfxYxyQJSGlFKUaBVLv2gWR0DAbqzZg5R1dX2UKGgGaAloD0MIu7VMhuPSckCUhpRSlGgVS7doFkdAwG6sScslLXV9lChoBmgJaA9DCGu28pK/vnBAlIaUUpRoFUvfaBZHQMBuxFDv3Jx1fZQoaAZoCWgPQwh1kNeDiQNyQJSGlFKUaBVLs2gWR0DAbsaMglnidX2UKGgGaAloD0MIJNHLKJbucUCUhpRSlGgVS8poFkdAwG7WVX3g1nV9lChoBmgJaA9DCAWk/Q9w0HJAlIaUUpRoFUvOaBZHQMBu15L7Ged1fZQoaAZoCWgPQwihvfp4aDBzQJSGlFKUaBVLtGgWR0DAbuLWAf+1dX2UKGgGaAloD0MIhnDMsifrcUCUhpRSlGgVTVkDaBZHQMBu8H+hoM91fZQoaAZoCWgPQwgdWI6QgW9yQJSGlFKUaBVLrmgWR0DAbvaL61stdX2UKGgGaAloD0MIl3X/WEiyckCUhpRSlGgVS89oFkdAwG76cVgx8HV9lChoBmgJaA9DCKvLKQExG05AlIaUUpRoFUtoaBZHQMBvBu/tY0V1fZQoaAZoCWgPQwhPBHEejv9xQJSGlFKUaBVN3QNoFkdAwG8UoOx0MnV9lChoBmgJaA9DCK1POSbLNXFAlIaUUpRoFU0/AWgWR0DAbys36yjYdX2UKGgGaAloD0MI7wBPWrjxcUCUhpRSlGgVS8VoFkdAwG8z9aUzK3V9lChoBmgJaA9DCPewFwrYF3NAlIaUUpRoFUvTaBZHQMBvPSWiUPh1fZQoaAZoCWgPQwgSwTi49MxuQJSGlFKUaBVLrGgWR0DAb0IvxpcpdX2UKGgGaAloD0MI63Hfah3VcUCUhpRSlGgVS7toFkdAwG9MXVLBbnV9lChoBmgJaA9DCOusFthjqHFAlIaUUpRoFUujaBZHQMBvTw4KhL51fZQoaAZoCWgPQwib49wmHE1wQJSGlFKUaBVLuGgWR0DAb1zVMEiddX2UKGgGaAloD0MIL2tigW8UckCUhpRSlGgVS7VoFkdAwG9z9srNGHV9lChoBmgJaA9DCFAXKZRFXHJAlIaUUpRoFUvQaBZHQMBvfo9LYf51fZQoaAZoCWgPQwiYGMv0i4xyQJSGlFKUaBVLqGgWR0DAb4B2bG3ndX2UKGgGaAloD0MI8Q9benTOcUCUhpRSlGgVS9loFkdAwG+Gskpqh3V9lChoBmgJaA9DCBtIF5tWsXJAlIaUUpRoFUvJaBZHQMBvkOnuRcN1fZQoaAZoCWgPQwgMIHwokT1zQJSGlFKUaBVL0mgWR0DAb53NVzZIdX2UKGgGaAloD0MI647FNulkckCUhpRSlGgVS7RoFkdAwG+ghnJ1aHV9lChoBmgJaA9DCNS3zOky1nFAlIaUUpRoFUunaBZHQMBvq7OeJ551fZQoaAZoCWgPQwjxRXu8UOtyQJSGlFKUaBVL1WgWR0DAb66QFLWadX2UKGgGaAloD0MIwocSLXkYakCUhpRSlGgVTegDaBZHQMBvuHDiwSt1fZQoaAZoCWgPQwi8lpAPekdyQJSGlFKUaBVLumgWR0DAb8EhzNlidX2UKGgGaAloD0MIl1KXjGOURkCUhpRSlGgVS2BoFkdAwG/HkGzKLnV9lChoBmgJaA9DCJ6WH7gKAnRAlIaUUpRoFUu7aBZHQMBvzUb1h9d1fZQoaAZoCWgPQwhCeLRxBEdxQJSGlFKUaBVLrGgWR0DAb86cCo0idX2UKGgGaAloD0MIPnlYqPWUcECUhpRSlGgVS6poFkdAwG/YLNwBHXV9lChoBmgJaA9DCFhUxOkkqHJAlIaUUpRoFUvAaBZHQMBv2B7mdRR1fZQoaAZoCWgPQwjizRq8b9lwQJSGlFKUaBVLtmgWR0DAb/Fm+TNddX2UKGgGaAloD0MIzuMwmL/XcUCUhpRSlGgVS5RoFkdAwG/9LWZqmHV9lChoBmgJaA9DCKIo0Cdyx3FAlIaUUpRoFU0VAWgWR0DAcABuEVWTdX2UKGgGaAloD0MINNqqJDIVckCUhpRSlGgVS9NoFkdAwHAMPlMh5nV9lChoBmgJaA9DCLSR66ZUKXFAlIaUUpRoFUu0aBZHQMBwFCO/+Kl1fZQoaAZoCWgPQwjq6SPwB+RzQJSGlFKUaBVLzWgWR0DAcBibDuSfdX2UKGgGaAloD0MIeJyiI/k3c0CUhpRSlGgVS+RoFkdAwHAf7vXsgXV9lChoBmgJaA9DCERN9PnoBHJAlIaUUpRoFUvAaBZHQMBwKAZTAFh1fZQoaAZoCWgPQwiqmiDq/odxQJSGlFKUaBVLrGgWR0DAcC9fsu3+dX2UKGgGaAloD0MItoZSe9FKcUCUhpRSlGgVS79oFkdAwHAz2FnIyXV9lChoBmgJaA9DCBQktrtHSHFAlIaUUpRoFUvfaBZHQMBwQNpdrwh1fZQoaAZoCWgPQwh2xvfFZYxxQJSGlFKUaBVLomgWR0DAcELfaYeDdX2UKGgGaAloD0MIlkIgl3iTdECUhpRSlGgVS7toFkdAwHBH4VRDTnV9lChoBmgJaA9DCEnzx7R2pnFAlIaUUpRoFUvPaBZHQMBwTpAUtZp1fZQoaAZoCWgPQwgp0CfyJENyQJSGlFKUaBVL02gWR0DAcFjmOlwcdX2UKGgGaAloD0MI7tEb7mPHcUCUhpRSlGgVS8RoFkdAwHBZl/6O53V9lChoBmgJaA9DCKVneokxUnBAlIaUUpRoFUu+aBZHQMBwcc+aBqd1fZQoaAZoCWgPQwj60AX1LchzQJSGlFKUaBVLtWgWR0DAcHf8baRIdX2UKGgGaAloD0MIpg9dUJ81c0CUhpRSlGgVS7VoFkdAwHCREb5uZXV9lChoBmgJaA9DCAot6/6xr29AlIaUUpRoFUu1aBZHQMBwlNMfzSV1fZQoaAZoCWgPQwge/pqsUedyQJSGlFKUaBVLy2gWR0DAcJhlnRLLdX2UKGgGaAloD0MI7RFqhpRKcUCUhpRSlGgVS6JoFkdAwHCe0lZ5iXV9lChoBmgJaA9DCC/Df7qBpnNAlIaUUpRoFUvoaBZHQMBwn6fSQYF1fZQoaAZoCWgPQwifBaG8z99yQJSGlFKUaBVL0GgWR0DAcK1uUD+zdX2UKGgGaAloD0MIhCwLJr6gcECUhpRSlGgVS7VoFkdAwHCu0FbFCXV9lChoBmgJaA9DCAkX8gju1HJAlIaUUpRoFUvLaBZHQMBwsi0ngHh1fZQoaAZoCWgPQwicMGE0KzNyQJSGlFKUaBVLq2gWR0DAcLWDYh+wdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1228, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0c7095a2fb6bbc1798e9cd2ab75848c3d483c50904c5adbc7c544c0581ca218
|
3 |
+
size 146584
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -42,21 +42,21 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
-
"learning_rate": 0.
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,16 +66,16 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8893524d30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8893524dc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8893524e50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8893524ee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8893524f70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f889352a040>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f889352a0d0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f889352a160>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f889352a1f0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f889352a280>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f889352a310>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f88935233f0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 3014656,
|
46 |
+
"_total_timesteps": 3000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1671987619158904062,
|
51 |
+
"learning_rate": 0.0004,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Ojbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI2n2j1Iy4K6NukSOCb/SDPbD4E6bdcptwAAAAAAAAAA2rwJviCshT/ZF8m+FZRVv06ygL6xwkO+AAAAAAAAAAA6vyY+9jF/P6R/pT778Bu/L9mfPqSASD4AAAAAAAAAAO3BQ74sN+Q+zxEbPZeXFr+KZJq+6N6SPQAAAAAAAAAAZu4+OykgabrAKOE6cSnRNUBw9TlbLwS6AACAPwAAgD9OLZe+k7wkPzvZfb2Ohie/roHnvlaPZj0AAAAAAAAAAFoB6D13lt8+TOczvrrPCr+kSyw+th7SvQAAAAAAAAAA5hwQPUg/3roGNka8M9eTPAhajjt2BYC9AACAPwAAgD9mSKc8C5PhPQKnYr0/k8W+Msg5PR6R4r0AAAAAAAAAAEbjXT5TA4o/AuPmPn+z3r5UvLk+NjaOPgAAAAAAAAAATdtvvUM9MLz1iVI+Ab2MPUmrJL3lMWw8AACAPwAAgD/AvI69hH04P9+qyTydlEO/vwMQvpn0oj0AAAAAAAAAAJqlDD1Iu4m6yCW4tk1b9DD1z0+7BhXUNQAAgD8AAIA/ZvgaveAhhD96JSK+wyaAvymcML3O8ye9AAAAAAAAAACAILG9dA9VPrYbJz6HEwi/qJ7ZvRx8Ez4AAAAAAAAAAJoRCj1cI2q6ansbvFRt4jhVjk26/Q1PuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.004885333333333408,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF0ompzaCckCUhpRSlIwBbJRLuowBdJRHQMBp9Cx/ust1fZQoaAZoCWgPQwiZSdQL/kBxQJSGlFKUaBVLtGgWR0DAafO0Xxe+dX2UKGgGaAloD0MIZOlDF9Ric0CUhpRSlGgVS9hoFkdAwGn/ThHby3V9lChoBmgJaA9DCCANp8wN3XFAlIaUUpRoFUvgaBZHQMBqAqPfbbl1fZQoaAZoCWgPQwghdxGmKB9zQJSGlFKUaBVLqGgWR0DAagn4oJAudX2UKGgGaAloD0MIhxqFJDO3cECUhpRSlGgVS7VoFkdAwGolIg/1QXV9lChoBmgJaA9DCARxHk5gU3JAlIaUUpRoFUvZaBZHQMBqL9XDFZR1fZQoaAZoCWgPQwggnE8d68pyQJSGlFKUaBVLqGgWR0DAakloBaLXdX2UKGgGaAloD0MIbZBJRo52ckCUhpRSlGgVS9FoFkdAwGpUQaJhv3V9lChoBmgJaA9DCETEzakkNnNAlIaUUpRoFUvXaBZHQMBqjL0J4Sp1fZQoaAZoCWgPQwjYnINnAqxyQJSGlFKUaBVLy2gWR0DAap/XXiBHdX2UKGgGaAloD0MIfIFZoUjqcUCUhpRSlGgVS6xoFkdAwGqiJemelXV9lChoBmgJaA9DCPWEJR5Q6nJAlIaUUpRoFUvJaBZHQMBqpES/TLJ1fZQoaAZoCWgPQwjC3sSQnPFxQJSGlFKUaBVLxWgWR0DAaqjOTq0MdX2UKGgGaAloD0MIE0azsj1pcUCUhpRSlGgVS8hoFkdAwGq4rCm/FnV9lChoBmgJaA9DCJIhx9bzGXJAlIaUUpRoFUvGaBZHQMBqxamGdqd1fZQoaAZoCWgPQwgOu+8YHptwQJSGlFKUaBVLsWgWR0DAatvxUedTdX2UKGgGaAloD0MI7QxTW2o/c0CUhpRSlGgVTRMBaBZHQMBq88iwB5p1fZQoaAZoCWgPQwjbwvNScfNyQJSGlFKUaBVLr2gWR0DAavYFcIJJdX2UKGgGaAloD0MIQUgWMEFMdECUhpRSlGgVS9poFkdAwGr3p5/smnV9lChoBmgJaA9DCCNMUS4NbXFAlIaUUpRoFUu8aBZHQMBrD11nuiN1fZQoaAZoCWgPQwgYITzaeLJxQJSGlFKUaBVLmmgWR0DAbcLVWjoIdX2UKGgGaAloD0MIrimQ2dnKcECUhpRSlGgVS7FoFkdAwG3JviLl3nV9lChoBmgJaA9DCP+VlSZl/3FAlIaUUpRoFUulaBZHQMBt2HdoFmp1fZQoaAZoCWgPQwj5n/zd+y1yQJSGlFKUaBVLyWgWR0DAbfenMt9QdX2UKGgGaAloD0MIRRFStzOgcUCUhpRSlGgVS7toFkdAwG3/l7MPjHV9lChoBmgJaA9DCAR0X87s8WRAlIaUUpRoFU3oA2gWR0DAbgcujASGdX2UKGgGaAloD0MI5E7pYL14ckCUhpRSlGgVS95oFkdAwG4LAk9lmXV9lChoBmgJaA9DCJJB7iJMM0ZAlIaUUpRoFUuKaBZHQMBuDmwzLwF1fZQoaAZoCWgPQwiLcJNRpXVzQJSGlFKUaBVLzWgWR0DAbhq4e9zwdX2UKGgGaAloD0MICFqBISuickCUhpRSlGgVS7hoFkdAwG4c0k4WDnV9lChoBmgJaA9DCAaeew+XbW9AlIaUUpRoFUujaBZHQMBuIYk3S8d1fZQoaAZoCWgPQwgDzHwHv6JyQJSGlFKUaBVLxGgWR0DAbjt76YVqdX2UKGgGaAloD0MIhbAaS1ifcECUhpRSlGgVS6toFkdAwG48ZtvXLHV9lChoBmgJaA9DCC5Tk+BNaXBAlIaUUpRoFUuYaBZHQMBuV1FH8TB1fZQoaAZoCWgPQwiY2lIHOcRyQJSGlFKUaBVLumgWR0DAboP4REncdX2UKGgGaAloD0MIsKpefudOc0CUhpRSlGgVS9BoFkdAwG6Fvx6OYXV9lChoBmgJaA9DCEgzFk3nonBAlIaUUpRoFUuxaBZHQMBuqjFId2h1fZQoaAZoCWgPQwiP4bGfxYxyQJSGlFKUaBVLv2gWR0DAbqzZg5R1dX2UKGgGaAloD0MIu7VMhuPSckCUhpRSlGgVS7doFkdAwG6sScslLXV9lChoBmgJaA9DCGu28pK/vnBAlIaUUpRoFUvfaBZHQMBuxFDv3Jx1fZQoaAZoCWgPQwh1kNeDiQNyQJSGlFKUaBVLs2gWR0DAbsaMglnidX2UKGgGaAloD0MIJNHLKJbucUCUhpRSlGgVS8poFkdAwG7WVX3g1nV9lChoBmgJaA9DCAWk/Q9w0HJAlIaUUpRoFUvOaBZHQMBu15L7Ged1fZQoaAZoCWgPQwihvfp4aDBzQJSGlFKUaBVLtGgWR0DAbuLWAf+1dX2UKGgGaAloD0MIhnDMsifrcUCUhpRSlGgVTVkDaBZHQMBu8H+hoM91fZQoaAZoCWgPQwgdWI6QgW9yQJSGlFKUaBVLrmgWR0DAbvaL61stdX2UKGgGaAloD0MIl3X/WEiyckCUhpRSlGgVS89oFkdAwG76cVgx8HV9lChoBmgJaA9DCKvLKQExG05AlIaUUpRoFUtoaBZHQMBvBu/tY0V1fZQoaAZoCWgPQwhPBHEejv9xQJSGlFKUaBVN3QNoFkdAwG8UoOx0MnV9lChoBmgJaA9DCK1POSbLNXFAlIaUUpRoFU0/AWgWR0DAbys36yjYdX2UKGgGaAloD0MI7wBPWrjxcUCUhpRSlGgVS8VoFkdAwG8z9aUzK3V9lChoBmgJaA9DCPewFwrYF3NAlIaUUpRoFUvTaBZHQMBvPSWiUPh1fZQoaAZoCWgPQwgSwTi49MxuQJSGlFKUaBVLrGgWR0DAb0IvxpcpdX2UKGgGaAloD0MI63Hfah3VcUCUhpRSlGgVS7toFkdAwG9MXVLBbnV9lChoBmgJaA9DCOusFthjqHFAlIaUUpRoFUujaBZHQMBvTw4KhL51fZQoaAZoCWgPQwib49wmHE1wQJSGlFKUaBVLuGgWR0DAb1zVMEiddX2UKGgGaAloD0MIL2tigW8UckCUhpRSlGgVS7VoFkdAwG9z9srNGHV9lChoBmgJaA9DCFAXKZRFXHJAlIaUUpRoFUvQaBZHQMBvfo9LYf51fZQoaAZoCWgPQwiYGMv0i4xyQJSGlFKUaBVLqGgWR0DAb4B2bG3ndX2UKGgGaAloD0MI8Q9benTOcUCUhpRSlGgVS9loFkdAwG+Gskpqh3V9lChoBmgJaA9DCBtIF5tWsXJAlIaUUpRoFUvJaBZHQMBvkOnuRcN1fZQoaAZoCWgPQwgMIHwokT1zQJSGlFKUaBVL0mgWR0DAb53NVzZIdX2UKGgGaAloD0MI647FNulkckCUhpRSlGgVS7RoFkdAwG+ghnJ1aHV9lChoBmgJaA9DCNS3zOky1nFAlIaUUpRoFUunaBZHQMBvq7OeJ551fZQoaAZoCWgPQwjxRXu8UOtyQJSGlFKUaBVL1WgWR0DAb66QFLWadX2UKGgGaAloD0MIwocSLXkYakCUhpRSlGgVTegDaBZHQMBvuHDiwSt1fZQoaAZoCWgPQwi8lpAPekdyQJSGlFKUaBVLumgWR0DAb8EhzNlidX2UKGgGaAloD0MIl1KXjGOURkCUhpRSlGgVS2BoFkdAwG/HkGzKLnV9lChoBmgJaA9DCJ6WH7gKAnRAlIaUUpRoFUu7aBZHQMBvzUb1h9d1fZQoaAZoCWgPQwhCeLRxBEdxQJSGlFKUaBVLrGgWR0DAb86cCo0idX2UKGgGaAloD0MIPnlYqPWUcECUhpRSlGgVS6poFkdAwG/YLNwBHXV9lChoBmgJaA9DCFhUxOkkqHJAlIaUUpRoFUvAaBZHQMBv2B7mdRR1fZQoaAZoCWgPQwjizRq8b9lwQJSGlFKUaBVLtmgWR0DAb/Fm+TNddX2UKGgGaAloD0MIzuMwmL/XcUCUhpRSlGgVS5RoFkdAwG/9LWZqmHV9lChoBmgJaA9DCKIo0Cdyx3FAlIaUUpRoFU0VAWgWR0DAcABuEVWTdX2UKGgGaAloD0MINNqqJDIVckCUhpRSlGgVS9NoFkdAwHAMPlMh5nV9lChoBmgJaA9DCLSR66ZUKXFAlIaUUpRoFUu0aBZHQMBwFCO/+Kl1fZQoaAZoCWgPQwjq6SPwB+RzQJSGlFKUaBVLzWgWR0DAcBibDuSfdX2UKGgGaAloD0MIeJyiI/k3c0CUhpRSlGgVS+RoFkdAwHAf7vXsgXV9lChoBmgJaA9DCERN9PnoBHJAlIaUUpRoFUvAaBZHQMBwKAZTAFh1fZQoaAZoCWgPQwiqmiDq/odxQJSGlFKUaBVLrGgWR0DAcC9fsu3+dX2UKGgGaAloD0MItoZSe9FKcUCUhpRSlGgVS79oFkdAwHAz2FnIyXV9lChoBmgJaA9DCBQktrtHSHFAlIaUUpRoFUvfaBZHQMBwQNpdrwh1fZQoaAZoCWgPQwh2xvfFZYxxQJSGlFKUaBVLomgWR0DAcELfaYeDdX2UKGgGaAloD0MIlkIgl3iTdECUhpRSlGgVS7toFkdAwHBH4VRDTnV9lChoBmgJaA9DCEnzx7R2pnFAlIaUUpRoFUvPaBZHQMBwTpAUtZp1fZQoaAZoCWgPQwgp0CfyJENyQJSGlFKUaBVL02gWR0DAcFjmOlwcdX2UKGgGaAloD0MI7tEb7mPHcUCUhpRSlGgVS8RoFkdAwHBZl/6O53V9lChoBmgJaA9DCKVneokxUnBAlIaUUpRoFUu+aBZHQMBwcc+aBqd1fZQoaAZoCWgPQwj60AX1LchzQJSGlFKUaBVLtWgWR0DAcHf8baRIdX2UKGgGaAloD0MIpg9dUJ81c0CUhpRSlGgVS7VoFkdAwHCREb5uZXV9lChoBmgJaA9DCAot6/6xr29AlIaUUpRoFUu1aBZHQMBwlNMfzSV1fZQoaAZoCWgPQwge/pqsUedyQJSGlFKUaBVLy2gWR0DAcJhlnRLLdX2UKGgGaAloD0MI7RFqhpRKcUCUhpRSlGgVS6JoFkdAwHCe0lZ5iXV9lChoBmgJaA9DCC/Df7qBpnNAlIaUUpRoFUvoaBZHQMBwn6fSQYF1fZQoaAZoCWgPQwifBaG8z99yQJSGlFKUaBVL0GgWR0DAcK1uUD+zdX2UKGgGaAloD0MIhCwLJr6gcECUhpRSlGgVS7VoFkdAwHCu0FbFCXV9lChoBmgJaA9DCAkX8gju1HJAlIaUUpRoFUvLaBZHQMBwsi0ngHh1fZQoaAZoCWgPQwicMGE0KzNyQJSGlFKUaBVLq2gWR0DAcLWDYh+wdWUu"
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 1228,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87545
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73758f2a6c4e92c952f5d8021f85741670099f4f18ba5a7d2bc16429d1802ec7
|
3 |
size 87545
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43073
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69354c35362464434bf621654f995868e9f9988f89bf6f55d8f08aa58d8e7384
|
3 |
size 43073
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 295.5090268988358, "std_reward": 20.942770264802963, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-25T17:34:00.687293"}
|