commit
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: ppo
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 82.51 +/- 98.78
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **ppo** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcbe3afc320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcbe3afc3b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcbe3afc440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcbe3afc4d0>", "_build": "<function ActorCriticPolicy._build at 0x7fcbe3afc560>", "forward": "<function ActorCriticPolicy.forward at 0x7fcbe3afc5f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcbe3afc680>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcbe3afc710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcbe3afc7a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcbe3afc830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcbe3afc8c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcbe3b4e4b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 65536, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652100329.957701, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrDtjyxibY/Ml4+P+MWVD7JcL68Yp76vQAAAAAAAAAA4Hx7vm+gVT2/dRu+xwKkvzZt1r7W2ES+AAAAAAAAAAAzuRQ8cF9DP3pnMj6j04S/7y4pv06iHL4AAAAAAAAAAFpk5L3R8IE/BiTyvlqXcr/8vew8DP0bvQAAAAAAAAAAjVAPPglgRT+euKg9F0JDv86u/T5u0so+AAAAAAAAAACSxTm/PVZgPnveeb9zqoW/txJMPtsKMr4AAAAAAAAAAA1N5j1864o/swLZPXOdG78/dSk+IqoqPgAAAAAAAAAA08P4PlHpJD5Gc0o/v9a7v43NqL1CQgo/AAAAAAAAAAATC5A+O4i9PnKe7z7X9aC/8fknvqyIGz4AAAAAAAAAAACRPj2M0h0/2sWWPnb/iL+/lia/znPRvgAAAAAAAAAAvnYYPyGogD6z9Rw/Ei6ov3Fqpz7eXoU+AAAAAAAAAABwnBk/WFzpPtMRhj+b8ou/YMn6vvdCEj4AAAAAAAAAAI0znr0ECaA/TqO+vqdzBr+51ZO9OE+QvQAAAAAAAAAAM/amPoArcD8ytMk+Y0McvzgnID6oV1M+AAAAAAAAAACTyWY+O7BYP9niET/Vu2e/spIVv27OLb4AAAAAAAAAAGBJe75JS6A/rLU8v+Qnyr7p0Ls+arkQPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzoqoiT53XsCUhpRSlIwBbJRLaYwBdJRHQFUfWattALR1fZQoaAZoCWgPQwidu10vTThfwJSGlFKUaBVLhWgWR0BVH/aDf3vhdX2UKGgGaAloD0MIZeQs7GmOWMCUhpRSlGgVS2RoFkdAVSKuyNXHR3V9lChoBmgJaA9DCFFNSdbhv1LAlIaUUpRoFUs7aBZHQFUpo2XLNfR1fZQoaAZoCWgPQwh8YTJVsBNgwJSGlFKUaBVLcWgWR0BVKe8K5TZQdX2UKGgGaAloD0MIiQrVzcXgW8CUhpRSlGgVS2ZoFkdAVTPPJJXhfnV9lChoBmgJaA9DCOQxA5XxjFrAlIaUUpRoFUtoaBZHQFU1zfrKNhp1fZQoaAZoCWgPQwgbSBebVq9TwJSGlFKUaBVLUmgWR0BVOiqQzUI+dX2UKGgGaAloD0MIjNmSVRF/X8CUhpRSlGgVS3doFkdAVTneIl+mWXV9lChoBmgJaA9DCBRAMbJkMjjAlIaUUpRoFUtkaBZHQFU61Tzd1uB1fZQoaAZoCWgPQwh9sIwNXaJpwJSGlFKUaBVLg2gWR0BVPSvC/GlzdX2UKGgGaAloD0MIz/Onjep3XMCUhpRSlGgVS2doFkdAVT3QiRnvlXV9lChoBmgJaA9DCNDTgEHSp7m/lIaUUpRoFUttaBZHQFVBWEsasIV1fZQoaAZoCWgPQwjs20lE+IhcwJSGlFKUaBVLg2gWR0BVQZPM0P6LdX2UKGgGaAloD0MIwFq1a0KiWsCUhpRSlGgVS39oFkdAVUI8PnSv1XV9lChoBmgJaA9DCH3rw3qje1rAlIaUUpRoFUtsaBZHQFVH72L5ylx1fZQoaAZoCWgPQwg7pu7KLvpiwJSGlFKUaBVLimgWR0BVSehXbM5fdX2UKGgGaAloD0MIKjkn9tANXMCUhpRSlGgVS1loFkdAVUrjJdSl33V9lChoBmgJaA9DCFq77UJzAlTAlIaUUpRoFUtDaBZHQFVM4Ajps411fZQoaAZoCWgPQwgoJ9pVCJ1xwJSGlFKUaBVLYWgWR0BVThOpKjBVdX2UKGgGaAloD0MIqwX2mEjpCcCUhpRSlGgVS4RoFkdAVVNG0/nnuHV9lChoBmgJaA9DCL5O6stS823AlIaUUpRoFUuQaBZHQFVUawljVhF1fZQoaAZoCWgPQwifymlPycZhwJSGlFKUaBVLR2gWR0BVVLLlmvnsdX2UKGgGaAloD0MItK88SE9hWMCUhpRSlGgVS0RoFkdAVVrylN1yNnV9lChoBmgJaA9DCOVFJuBXJmDAlIaUUpRoFUtYaBZHQFVdbWVeKKp1fZQoaAZoCWgPQwjJPsiyYCZfwJSGlFKUaBVLVGgWR0BVYGr4nF5wdX2UKGgGaAloD0MIAb9GkiCcW8CUhpRSlGgVS2loFkdAVWFgE2YOUnV9lChoBmgJaA9DCLlvtU7c+GTAlIaUUpRoFUt2aBZHQFViFPSDyvt1fZQoaAZoCWgPQwj9MhgjEnVSwJSGlFKUaBVLcmgWR0BVZCz9jwx4dX2UKGgGaAloD0MIc2VQbXCpWcCUhpRSlGgVS2loFkdAVWSlyimEXnV9lChoBmgJaA9DCOnuOhtywGfAlIaUUpRoFUtmaBZHQFVm9lmOEM91fZQoaAZoCWgPQwhSRfEqa7xTwJSGlFKUaBVLXmgWR0BVbKZx7zCldX2UKGgGaAloD0MIsvLLYAzWZMCUhpRSlGgVS2hoFkdAVW5KjBVMmHV9lChoBmgJaA9DCPORlPSwPmLAlIaUUpRoFUtiaBZHQFVvHEdeY2N1fZQoaAZoCWgPQwg/q8yU1oNkwJSGlFKUaBVLYWgWR0BVcQjps41hdX2UKGgGaAloD0MIZK4Mqo0ba8CUhpRSlGgVS2RoFkdAVXNjgAIY33V9lChoBmgJaA9DCFDG+DB7wFrAlIaUUpRoFUtYaBZHQFV0RW912aF1fZQoaAZoCWgPQwh2cRsN4IhuwJSGlFKUaBVLYGgWR0BVeFUQ04zadX2UKGgGaAloD0MIy7+WV66FZcCUhpRSlGgVS0toFkdAVXxz3h4t6HV9lChoBmgJaA9DCGoV/aGZuFLAlIaUUpRoFUtLaBZHQFV/SFXaJyh1fZQoaAZoCWgPQwi+MQQAx8JfwJSGlFKUaBVLYGgWR0BVgLDqGDcudX2UKGgGaAloD0MI3UCBd3JcZ8CUhpRSlGgVS2hoFkdAVYZvm5lOGnV9lChoBmgJaA9DCB+5Nem2J1rAlIaUUpRoFUt/aBZHQFWKCSidrft1fZQoaAZoCWgPQwigqGxYU/NuwJSGlFKUaBVLl2gWR0BVjJyQxN7CdX2UKGgGaAloD0MI+z+H+fKfZMCUhpRSlGgVS3RoFkdAVYzfk3juKHV9lChoBmgJaA9DCB3nNuFe/mjAlIaUUpRoFUt4aBZHQFWQ+HrQgLZ1fZQoaAZoCWgPQwhPzHoxFAliwJSGlFKUaBVLYmgWR0BVkuYplSTAdX2UKGgGaAloD0MIZ2DkZU11Y8CUhpRSlGgVS2VoFkdAVZTkPtlZo3V9lChoBmgJaA9DCAyVfy2v61/AlIaUUpRoFUtlaBZHQFWWqebutwJ1fZQoaAZoCWgPQwgpz7wcdiRWwJSGlFKUaBVLgmgWR0BVl3yNGViXdX2UKGgGaAloD0MI/U0oRMDSW8CUhpRSlGgVS0poFkdAVZiYF7laKXV9lChoBmgJaA9DCI9U3/lFxVnAlIaUUpRoFUtNaBZHQFWdiFj/dZd1fZQoaAZoCWgPQwiyDkdX6ehgwJSGlFKUaBVLbmgWR0BVnkSZjQRgdX2UKGgGaAloD0MIMe4G0VoNO8CUhpRSlGgVS4hoFkdAVaBygf2bonV9lChoBmgJaA9DCFxV9l0RJV3AlIaUUpRoFUt3aBZHQFWlinpB5X51fZQoaAZoCWgPQwiXN4drdWpywJSGlFKUaBVLhmgWR0BVpejmCAc1dX2UKGgGaAloD0MIOq5GdiU5YMCUhpRSlGgVS1BoFkdAVatCPZIxxnV9lChoBmgJaA9DCFx381SHIk3AlIaUUpRoFUtQaBZHQFWrddVvMr51fZQoaAZoCWgPQwi+2lGcoy1cwJSGlFKUaBVLZmgWR0BVrcMZxaPkdX2UKGgGaAloD0MIcodNZObUTsCUhpRSlGgVS3doFkdAVa5/7SApa3V9lChoBmgJaA9DCHuGcMwyAGLAlIaUUpRoFUtLaBZHQFWuD9wWFex1fZQoaAZoCWgPQwh72Xbami1gwJSGlFKUaBVLYGgWR0BVrvh/Aj6fdX2UKGgGaAloD0MIls/yPLgQXcCUhpRSlGgVS1RoFkdAVbLaxoqTbHV9lChoBmgJaA9DCLpKd9fZRVnAlIaUUpRoFUtWaBZHQFW1Xt0FKTV1fZQoaAZoCWgPQwinzw64rsRfwJSGlFKUaBVLU2gWR0BVtdMj/uLKdX2UKGgGaAloD0MI+IxEaASnTMCUhpRSlGgVS1RoFkdAVbbqKP4mC3V9lChoBmgJaA9DCLK7QEmBllXAlIaUUpRoFUtMaBZHQFXBKwpvxYt1fZQoaAZoCWgPQwgCnUmbqtdewJSGlFKUaBVLU2gWR0BVw4KMNtqIdX2UKGgGaAloD0MIYoGv6Na3ScCUhpRSlGgVS0doFkdAVcTJcPe54HV9lChoBmgJaA9DCFd2weCan1LAlIaUUpRoFUtBaBZHQFXFoSteUpx1fZQoaAZoCWgPQwhmLnB5rLJmwJSGlFKUaBVLZmgWR0BVxXu3MINWdX2UKGgGaAloD0MIjBL0F3r1WMCUhpRSlGgVS0RoFkdAVcYvUSZjQXV9lChoBmgJaA9DCB42kZkLJFXAlIaUUpRoFUtMaBZHQFXHFFlTWG11fZQoaAZoCWgPQwjbpKKxdp5owJSGlFKUaBVLf2gWR0BVzISlFc6edX2UKGgGaAloD0MIVFc+y/PcWsCUhpRSlGgVS0hoFkdAVc0yhzvJBHV9lChoBmgJaA9DCJw24zTEemfAlIaUUpRoFUuEaBZHQFXNxN7Bwdd1fZQoaAZoCWgPQwgFoidlUkPBP5SGlFKUaBVLkmgWR0BVzvci4axYdX2UKGgGaAloD0MIr0M1JVm4VMCUhpRSlGgVS0BoFkdAVc6ii7Ciy3V9lChoBmgJaA9DCJrN4zCY/1TAlIaUUpRoFUtdaBZHQFXPtD2Jzkp1fZQoaAZoCWgPQwgiOZm4VQlfwJSGlFKUaBVLamgWR0BV1XDvVmSRdX2UKGgGaAloD0MI6KT3ja8kVcCUhpRSlGgVSz9oFkdAVdsOvt+kQHV9lChoBmgJaA9DCEfIQJ5dVlLAlIaUUpRoFUtGaBZHQFXhLm6oVEd1fZQoaAZoCWgPQwg3je21IPtrwJSGlFKUaBVLX2gWR0BV5h5LRKHxdX2UKGgGaAloD0MID5iHTPnQUMCUhpRSlGgVS0BoFkdAVejCBPKuCHV9lChoBmgJaA9DCBDK+ziaK1fAlIaUUpRoFUuDaBZHQFXo8m8dxQ11fZQoaAZoCWgPQwjhsgqbAZBjwJSGlFKUaBVLXGgWR0BV6sGxD9fkdX2UKGgGaAloD0MICMcse5LEb8CUhpRSlGgVS45oFkdAVe0H7gsK9nV9lChoBmgJaA9DCFVQUfUrb1jAlIaUUpRoFUtGaBZHQFXs9n9Nvfl1fZQoaAZoCWgPQwhcA1slWNVawJSGlFKUaBVLTmgWR0BV7tP557gLdX2UKGgGaAloD0MIcy7FVWWgUcCUhpRSlGgVS1JoFkdAVe+auwHJLnV9lChoBmgJaA9DCDEJF/IIz2bAlIaUUpRoFUtxaBZHQFXyaUA1ejV1fZQoaAZoCWgPQwjoFroSgW1jwJSGlFKUaBVLcmgWR0BV80UoKD02dX2UKGgGaAloD0MI+UogJXZ5c8CUhpRSlGgVS29oFkdAVfOvjfek6HV9lChoBmgJaA9DCKBQTx+Bp1rAlIaUUpRoFUtnaBZHQFX2DGLk0aZ1fZQoaAZoCWgPQwiQ9GkV/VtrwJSGlFKUaBVLcGgWR0BV+fdl/YrbdX2UKGgGaAloD0MIu7a3W5INXcCUhpRSlGgVS0xoFkdAVfq1Bt1p03V9lChoBmgJaA9DCHlb6bXZiFTAlIaUUpRoFUtpaBZHQFX/ZnctXgd1fZQoaAZoCWgPQwgiN8MN+CJLwJSGlFKUaBVLRmgWR0BWBLIkqto0dX2UKGgGaAloD0MIRgn6Cz1RV8CUhpRSlGgVS0xoFkdAVgVfZ26kI3V9lChoBmgJaA9DCHdNSGsM8WPAlIaUUpRoFUteaBZHQFYMeEZiuuB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f2c84c0350c2eff5a2a8efcf54326ddd48b83c37dcc8bf5c0b3ab873a509cfd
|
3 |
+
size 143910
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcbe3afc320>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcbe3afc3b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcbe3afc440>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcbe3afc4d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fcbe3afc560>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fcbe3afc5f0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcbe3afc680>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fcbe3afc710>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcbe3afc7a0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcbe3afc830>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcbe3afc8c0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fcbe3b4e4b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 65536,
|
46 |
+
"_total_timesteps": 50000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652100329.957701,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrDtjyxibY/Ml4+P+MWVD7JcL68Yp76vQAAAAAAAAAA4Hx7vm+gVT2/dRu+xwKkvzZt1r7W2ES+AAAAAAAAAAAzuRQ8cF9DP3pnMj6j04S/7y4pv06iHL4AAAAAAAAAAFpk5L3R8IE/BiTyvlqXcr/8vew8DP0bvQAAAAAAAAAAjVAPPglgRT+euKg9F0JDv86u/T5u0so+AAAAAAAAAACSxTm/PVZgPnveeb9zqoW/txJMPtsKMr4AAAAAAAAAAA1N5j1864o/swLZPXOdG78/dSk+IqoqPgAAAAAAAAAA08P4PlHpJD5Gc0o/v9a7v43NqL1CQgo/AAAAAAAAAAATC5A+O4i9PnKe7z7X9aC/8fknvqyIGz4AAAAAAAAAAACRPj2M0h0/2sWWPnb/iL+/lia/znPRvgAAAAAAAAAAvnYYPyGogD6z9Rw/Ei6ov3Fqpz7eXoU+AAAAAAAAAABwnBk/WFzpPtMRhj+b8ou/YMn6vvdCEj4AAAAAAAAAAI0znr0ECaA/TqO+vqdzBr+51ZO9OE+QvQAAAAAAAAAAM/amPoArcD8ytMk+Y0McvzgnID6oV1M+AAAAAAAAAACTyWY+O7BYP9niET/Vu2e/spIVv27OLb4AAAAAAAAAAGBJe75JS6A/rLU8v+Qnyr7p0Ls+arkQPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.3107200000000001,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzoqoiT53XsCUhpRSlIwBbJRLaYwBdJRHQFUfWattALR1fZQoaAZoCWgPQwidu10vTThfwJSGlFKUaBVLhWgWR0BVH/aDf3vhdX2UKGgGaAloD0MIZeQs7GmOWMCUhpRSlGgVS2RoFkdAVSKuyNXHR3V9lChoBmgJaA9DCFFNSdbhv1LAlIaUUpRoFUs7aBZHQFUpo2XLNfR1fZQoaAZoCWgPQwh8YTJVsBNgwJSGlFKUaBVLcWgWR0BVKe8K5TZQdX2UKGgGaAloD0MIiQrVzcXgW8CUhpRSlGgVS2ZoFkdAVTPPJJXhfnV9lChoBmgJaA9DCOQxA5XxjFrAlIaUUpRoFUtoaBZHQFU1zfrKNhp1fZQoaAZoCWgPQwgbSBebVq9TwJSGlFKUaBVLUmgWR0BVOiqQzUI+dX2UKGgGaAloD0MIjNmSVRF/X8CUhpRSlGgVS3doFkdAVTneIl+mWXV9lChoBmgJaA9DCBRAMbJkMjjAlIaUUpRoFUtkaBZHQFU61Tzd1uB1fZQoaAZoCWgPQwh9sIwNXaJpwJSGlFKUaBVLg2gWR0BVPSvC/GlzdX2UKGgGaAloD0MIz/Onjep3XMCUhpRSlGgVS2doFkdAVT3QiRnvlXV9lChoBmgJaA9DCNDTgEHSp7m/lIaUUpRoFUttaBZHQFVBWEsasIV1fZQoaAZoCWgPQwjs20lE+IhcwJSGlFKUaBVLg2gWR0BVQZPM0P6LdX2UKGgGaAloD0MIwFq1a0KiWsCUhpRSlGgVS39oFkdAVUI8PnSv1XV9lChoBmgJaA9DCH3rw3qje1rAlIaUUpRoFUtsaBZHQFVH72L5ylx1fZQoaAZoCWgPQwg7pu7KLvpiwJSGlFKUaBVLimgWR0BVSehXbM5fdX2UKGgGaAloD0MIKjkn9tANXMCUhpRSlGgVS1loFkdAVUrjJdSl33V9lChoBmgJaA9DCFq77UJzAlTAlIaUUpRoFUtDaBZHQFVM4Ajps411fZQoaAZoCWgPQwgoJ9pVCJ1xwJSGlFKUaBVLYWgWR0BVThOpKjBVdX2UKGgGaAloD0MIqwX2mEjpCcCUhpRSlGgVS4RoFkdAVVNG0/nnuHV9lChoBmgJaA9DCL5O6stS823AlIaUUpRoFUuQaBZHQFVUawljVhF1fZQoaAZoCWgPQwifymlPycZhwJSGlFKUaBVLR2gWR0BVVLLlmvnsdX2UKGgGaAloD0MItK88SE9hWMCUhpRSlGgVS0RoFkdAVVrylN1yNnV9lChoBmgJaA9DCOVFJuBXJmDAlIaUUpRoFUtYaBZHQFVdbWVeKKp1fZQoaAZoCWgPQwjJPsiyYCZfwJSGlFKUaBVLVGgWR0BVYGr4nF5wdX2UKGgGaAloD0MIAb9GkiCcW8CUhpRSlGgVS2loFkdAVWFgE2YOUnV9lChoBmgJaA9DCLlvtU7c+GTAlIaUUpRoFUt2aBZHQFViFPSDyvt1fZQoaAZoCWgPQwj9MhgjEnVSwJSGlFKUaBVLcmgWR0BVZCz9jwx4dX2UKGgGaAloD0MIc2VQbXCpWcCUhpRSlGgVS2loFkdAVWSlyimEXnV9lChoBmgJaA9DCOnuOhtywGfAlIaUUpRoFUtmaBZHQFVm9lmOEM91fZQoaAZoCWgPQwhSRfEqa7xTwJSGlFKUaBVLXmgWR0BVbKZx7zCldX2UKGgGaAloD0MIsvLLYAzWZMCUhpRSlGgVS2hoFkdAVW5KjBVMmHV9lChoBmgJaA9DCPORlPSwPmLAlIaUUpRoFUtiaBZHQFVvHEdeY2N1fZQoaAZoCWgPQwg/q8yU1oNkwJSGlFKUaBVLYWgWR0BVcQjps41hdX2UKGgGaAloD0MIZK4Mqo0ba8CUhpRSlGgVS2RoFkdAVXNjgAIY33V9lChoBmgJaA9DCFDG+DB7wFrAlIaUUpRoFUtYaBZHQFV0RW912aF1fZQoaAZoCWgPQwh2cRsN4IhuwJSGlFKUaBVLYGgWR0BVeFUQ04zadX2UKGgGaAloD0MIy7+WV66FZcCUhpRSlGgVS0toFkdAVXxz3h4t6HV9lChoBmgJaA9DCGoV/aGZuFLAlIaUUpRoFUtLaBZHQFV/SFXaJyh1fZQoaAZoCWgPQwi+MQQAx8JfwJSGlFKUaBVLYGgWR0BVgLDqGDcudX2UKGgGaAloD0MI3UCBd3JcZ8CUhpRSlGgVS2hoFkdAVYZvm5lOGnV9lChoBmgJaA9DCB+5Nem2J1rAlIaUUpRoFUt/aBZHQFWKCSidrft1fZQoaAZoCWgPQwigqGxYU/NuwJSGlFKUaBVLl2gWR0BVjJyQxN7CdX2UKGgGaAloD0MI+z+H+fKfZMCUhpRSlGgVS3RoFkdAVYzfk3juKHV9lChoBmgJaA9DCB3nNuFe/mjAlIaUUpRoFUt4aBZHQFWQ+HrQgLZ1fZQoaAZoCWgPQwhPzHoxFAliwJSGlFKUaBVLYmgWR0BVkuYplSTAdX2UKGgGaAloD0MIZ2DkZU11Y8CUhpRSlGgVS2VoFkdAVZTkPtlZo3V9lChoBmgJaA9DCAyVfy2v61/AlIaUUpRoFUtlaBZHQFWWqebutwJ1fZQoaAZoCWgPQwgpz7wcdiRWwJSGlFKUaBVLgmgWR0BVl3yNGViXdX2UKGgGaAloD0MI/U0oRMDSW8CUhpRSlGgVS0poFkdAVZiYF7laKXV9lChoBmgJaA9DCI9U3/lFxVnAlIaUUpRoFUtNaBZHQFWdiFj/dZd1fZQoaAZoCWgPQwiyDkdX6ehgwJSGlFKUaBVLbmgWR0BVnkSZjQRgdX2UKGgGaAloD0MIMe4G0VoNO8CUhpRSlGgVS4hoFkdAVaBygf2bonV9lChoBmgJaA9DCFxV9l0RJV3AlIaUUpRoFUt3aBZHQFWlinpB5X51fZQoaAZoCWgPQwiXN4drdWpywJSGlFKUaBVLhmgWR0BVpejmCAc1dX2UKGgGaAloD0MIOq5GdiU5YMCUhpRSlGgVS1BoFkdAVatCPZIxxnV9lChoBmgJaA9DCFx381SHIk3AlIaUUpRoFUtQaBZHQFWrddVvMr51fZQoaAZoCWgPQwi+2lGcoy1cwJSGlFKUaBVLZmgWR0BVrcMZxaPkdX2UKGgGaAloD0MIcodNZObUTsCUhpRSlGgVS3doFkdAVa5/7SApa3V9lChoBmgJaA9DCHuGcMwyAGLAlIaUUpRoFUtLaBZHQFWuD9wWFex1fZQoaAZoCWgPQwh72Xbami1gwJSGlFKUaBVLYGgWR0BVrvh/Aj6fdX2UKGgGaAloD0MIls/yPLgQXcCUhpRSlGgVS1RoFkdAVbLaxoqTbHV9lChoBmgJaA9DCLpKd9fZRVnAlIaUUpRoFUtWaBZHQFW1Xt0FKTV1fZQoaAZoCWgPQwinzw64rsRfwJSGlFKUaBVLU2gWR0BVtdMj/uLKdX2UKGgGaAloD0MI+IxEaASnTMCUhpRSlGgVS1RoFkdAVbbqKP4mC3V9lChoBmgJaA9DCLK7QEmBllXAlIaUUpRoFUtMaBZHQFXBKwpvxYt1fZQoaAZoCWgPQwgCnUmbqtdewJSGlFKUaBVLU2gWR0BVw4KMNtqIdX2UKGgGaAloD0MIYoGv6Na3ScCUhpRSlGgVS0doFkdAVcTJcPe54HV9lChoBmgJaA9DCFd2weCan1LAlIaUUpRoFUtBaBZHQFXFoSteUpx1fZQoaAZoCWgPQwhmLnB5rLJmwJSGlFKUaBVLZmgWR0BVxXu3MINWdX2UKGgGaAloD0MIjBL0F3r1WMCUhpRSlGgVS0RoFkdAVcYvUSZjQXV9lChoBmgJaA9DCB42kZkLJFXAlIaUUpRoFUtMaBZHQFXHFFlTWG11fZQoaAZoCWgPQwjbpKKxdp5owJSGlFKUaBVLf2gWR0BVzISlFc6edX2UKGgGaAloD0MIVFc+y/PcWsCUhpRSlGgVS0hoFkdAVc0yhzvJBHV9lChoBmgJaA9DCJw24zTEemfAlIaUUpRoFUuEaBZHQFXNxN7Bwdd1fZQoaAZoCWgPQwgFoidlUkPBP5SGlFKUaBVLkmgWR0BVzvci4axYdX2UKGgGaAloD0MIr0M1JVm4VMCUhpRSlGgVS0BoFkdAVc6ii7Ciy3V9lChoBmgJaA9DCJrN4zCY/1TAlIaUUpRoFUtdaBZHQFXPtD2Jzkp1fZQoaAZoCWgPQwgiOZm4VQlfwJSGlFKUaBVLamgWR0BV1XDvVmSRdX2UKGgGaAloD0MI6KT3ja8kVcCUhpRSlGgVSz9oFkdAVdsOvt+kQHV9lChoBmgJaA9DCEfIQJ5dVlLAlIaUUpRoFUtGaBZHQFXhLm6oVEd1fZQoaAZoCWgPQwg3je21IPtrwJSGlFKUaBVLX2gWR0BV5h5LRKHxdX2UKGgGaAloD0MID5iHTPnQUMCUhpRSlGgVS0BoFkdAVejCBPKuCHV9lChoBmgJaA9DCBDK+ziaK1fAlIaUUpRoFUuDaBZHQFXo8m8dxQ11fZQoaAZoCWgPQwjhsgqbAZBjwJSGlFKUaBVLXGgWR0BV6sGxD9fkdX2UKGgGaAloD0MICMcse5LEb8CUhpRSlGgVS45oFkdAVe0H7gsK9nV9lChoBmgJaA9DCFVQUfUrb1jAlIaUUpRoFUtGaBZHQFXs9n9Nvfl1fZQoaAZoCWgPQwhcA1slWNVawJSGlFKUaBVLTmgWR0BV7tP557gLdX2UKGgGaAloD0MIcy7FVWWgUcCUhpRSlGgVS1JoFkdAVe+auwHJLnV9lChoBmgJaA9DCDEJF/IIz2bAlIaUUpRoFUtxaBZHQFXyaUA1ejV1fZQoaAZoCWgPQwjoFroSgW1jwJSGlFKUaBVLcmgWR0BV80UoKD02dX2UKGgGaAloD0MI+UogJXZ5c8CUhpRSlGgVS29oFkdAVfOvjfek6HV9lChoBmgJaA9DCKBQTx+Bp1rAlIaUUpRoFUtnaBZHQFX2DGLk0aZ1fZQoaAZoCWgPQwiQ9GkV/VtrwJSGlFKUaBVLcGgWR0BV+fdl/YrbdX2UKGgGaAloD0MIu7a3W5INXcCUhpRSlGgVS0xoFkdAVfq1Bt1p03V9lChoBmgJaA9DCHlb6bXZiFTAlIaUUpRoFUtpaBZHQFX/ZnctXgd1fZQoaAZoCWgPQwgiN8MN+CJLwJSGlFKUaBVLRmgWR0BWBLIkqto0dX2UKGgGaAloD0MIRgn6Cz1RV8CUhpRSlGgVS0xoFkdAVgVfZ26kI3V9lChoBmgJaA9DCHdNSGsM8WPAlIaUUpRoFUteaBZHQFYMeEZiuuB1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 16,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3566eb6071a9ddf2168a419fb472bbfe8ec73c14e62be2f249a5e73fc6cb1ff9
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8209d6e6c1f53763b3af37e9beb1271a81c120cbc889edb0f2b073c927f14761
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:273475c7ed04fb667e878ada5165cc338fed083efbb12c9244b6911af7967982
|
3 |
+
size 229622
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 82.51272194532211, "std_reward": 98.78419574572392, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T12:47:46.946131"}
|