darttur commited on
Commit
b587fbb
1 Parent(s): f657348
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: ppo
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 82.51 +/- 98.78
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **ppo** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcbe3afc320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcbe3afc3b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcbe3afc440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcbe3afc4d0>", "_build": "<function ActorCriticPolicy._build at 0x7fcbe3afc560>", "forward": "<function ActorCriticPolicy.forward at 0x7fcbe3afc5f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcbe3afc680>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcbe3afc710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcbe3afc7a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcbe3afc830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcbe3afc8c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcbe3b4e4b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 65536, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652100329.957701, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrDtjyxibY/Ml4+P+MWVD7JcL68Yp76vQAAAAAAAAAA4Hx7vm+gVT2/dRu+xwKkvzZt1r7W2ES+AAAAAAAAAAAzuRQ8cF9DP3pnMj6j04S/7y4pv06iHL4AAAAAAAAAAFpk5L3R8IE/BiTyvlqXcr/8vew8DP0bvQAAAAAAAAAAjVAPPglgRT+euKg9F0JDv86u/T5u0so+AAAAAAAAAACSxTm/PVZgPnveeb9zqoW/txJMPtsKMr4AAAAAAAAAAA1N5j1864o/swLZPXOdG78/dSk+IqoqPgAAAAAAAAAA08P4PlHpJD5Gc0o/v9a7v43NqL1CQgo/AAAAAAAAAAATC5A+O4i9PnKe7z7X9aC/8fknvqyIGz4AAAAAAAAAAACRPj2M0h0/2sWWPnb/iL+/lia/znPRvgAAAAAAAAAAvnYYPyGogD6z9Rw/Ei6ov3Fqpz7eXoU+AAAAAAAAAABwnBk/WFzpPtMRhj+b8ou/YMn6vvdCEj4AAAAAAAAAAI0znr0ECaA/TqO+vqdzBr+51ZO9OE+QvQAAAAAAAAAAM/amPoArcD8ytMk+Y0McvzgnID6oV1M+AAAAAAAAAACTyWY+O7BYP9niET/Vu2e/spIVv27OLb4AAAAAAAAAAGBJe75JS6A/rLU8v+Qnyr7p0Ls+arkQPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzoqoiT53XsCUhpRSlIwBbJRLaYwBdJRHQFUfWattALR1fZQoaAZoCWgPQwidu10vTThfwJSGlFKUaBVLhWgWR0BVH/aDf3vhdX2UKGgGaAloD0MIZeQs7GmOWMCUhpRSlGgVS2RoFkdAVSKuyNXHR3V9lChoBmgJaA9DCFFNSdbhv1LAlIaUUpRoFUs7aBZHQFUpo2XLNfR1fZQoaAZoCWgPQwh8YTJVsBNgwJSGlFKUaBVLcWgWR0BVKe8K5TZQdX2UKGgGaAloD0MIiQrVzcXgW8CUhpRSlGgVS2ZoFkdAVTPPJJXhfnV9lChoBmgJaA9DCOQxA5XxjFrAlIaUUpRoFUtoaBZHQFU1zfrKNhp1fZQoaAZoCWgPQwgbSBebVq9TwJSGlFKUaBVLUmgWR0BVOiqQzUI+dX2UKGgGaAloD0MIjNmSVRF/X8CUhpRSlGgVS3doFkdAVTneIl+mWXV9lChoBmgJaA9DCBRAMbJkMjjAlIaUUpRoFUtkaBZHQFU61Tzd1uB1fZQoaAZoCWgPQwh9sIwNXaJpwJSGlFKUaBVLg2gWR0BVPSvC/GlzdX2UKGgGaAloD0MIz/Onjep3XMCUhpRSlGgVS2doFkdAVT3QiRnvlXV9lChoBmgJaA9DCNDTgEHSp7m/lIaUUpRoFUttaBZHQFVBWEsasIV1fZQoaAZoCWgPQwjs20lE+IhcwJSGlFKUaBVLg2gWR0BVQZPM0P6LdX2UKGgGaAloD0MIwFq1a0KiWsCUhpRSlGgVS39oFkdAVUI8PnSv1XV9lChoBmgJaA9DCH3rw3qje1rAlIaUUpRoFUtsaBZHQFVH72L5ylx1fZQoaAZoCWgPQwg7pu7KLvpiwJSGlFKUaBVLimgWR0BVSehXbM5fdX2UKGgGaAloD0MIKjkn9tANXMCUhpRSlGgVS1loFkdAVUrjJdSl33V9lChoBmgJaA9DCFq77UJzAlTAlIaUUpRoFUtDaBZHQFVM4Ajps411fZQoaAZoCWgPQwgoJ9pVCJ1xwJSGlFKUaBVLYWgWR0BVThOpKjBVdX2UKGgGaAloD0MIqwX2mEjpCcCUhpRSlGgVS4RoFkdAVVNG0/nnuHV9lChoBmgJaA9DCL5O6stS823AlIaUUpRoFUuQaBZHQFVUawljVhF1fZQoaAZoCWgPQwifymlPycZhwJSGlFKUaBVLR2gWR0BVVLLlmvnsdX2UKGgGaAloD0MItK88SE9hWMCUhpRSlGgVS0RoFkdAVVrylN1yNnV9lChoBmgJaA9DCOVFJuBXJmDAlIaUUpRoFUtYaBZHQFVdbWVeKKp1fZQoaAZoCWgPQwjJPsiyYCZfwJSGlFKUaBVLVGgWR0BVYGr4nF5wdX2UKGgGaAloD0MIAb9GkiCcW8CUhpRSlGgVS2loFkdAVWFgE2YOUnV9lChoBmgJaA9DCLlvtU7c+GTAlIaUUpRoFUt2aBZHQFViFPSDyvt1fZQoaAZoCWgPQwj9MhgjEnVSwJSGlFKUaBVLcmgWR0BVZCz9jwx4dX2UKGgGaAloD0MIc2VQbXCpWcCUhpRSlGgVS2loFkdAVWSlyimEXnV9lChoBmgJaA9DCOnuOhtywGfAlIaUUpRoFUtmaBZHQFVm9lmOEM91fZQoaAZoCWgPQwhSRfEqa7xTwJSGlFKUaBVLXmgWR0BVbKZx7zCldX2UKGgGaAloD0MIsvLLYAzWZMCUhpRSlGgVS2hoFkdAVW5KjBVMmHV9lChoBmgJaA9DCPORlPSwPmLAlIaUUpRoFUtiaBZHQFVvHEdeY2N1fZQoaAZoCWgPQwg/q8yU1oNkwJSGlFKUaBVLYWgWR0BVcQjps41hdX2UKGgGaAloD0MIZK4Mqo0ba8CUhpRSlGgVS2RoFkdAVXNjgAIY33V9lChoBmgJaA9DCFDG+DB7wFrAlIaUUpRoFUtYaBZHQFV0RW912aF1fZQoaAZoCWgPQwh2cRsN4IhuwJSGlFKUaBVLYGgWR0BVeFUQ04zadX2UKGgGaAloD0MIy7+WV66FZcCUhpRSlGgVS0toFkdAVXxz3h4t6HV9lChoBmgJaA9DCGoV/aGZuFLAlIaUUpRoFUtLaBZHQFV/SFXaJyh1fZQoaAZoCWgPQwi+MQQAx8JfwJSGlFKUaBVLYGgWR0BVgLDqGDcudX2UKGgGaAloD0MI3UCBd3JcZ8CUhpRSlGgVS2hoFkdAVYZvm5lOGnV9lChoBmgJaA9DCB+5Nem2J1rAlIaUUpRoFUt/aBZHQFWKCSidrft1fZQoaAZoCWgPQwigqGxYU/NuwJSGlFKUaBVLl2gWR0BVjJyQxN7CdX2UKGgGaAloD0MI+z+H+fKfZMCUhpRSlGgVS3RoFkdAVYzfk3juKHV9lChoBmgJaA9DCB3nNuFe/mjAlIaUUpRoFUt4aBZHQFWQ+HrQgLZ1fZQoaAZoCWgPQwhPzHoxFAliwJSGlFKUaBVLYmgWR0BVkuYplSTAdX2UKGgGaAloD0MIZ2DkZU11Y8CUhpRSlGgVS2VoFkdAVZTkPtlZo3V9lChoBmgJaA9DCAyVfy2v61/AlIaUUpRoFUtlaBZHQFWWqebutwJ1fZQoaAZoCWgPQwgpz7wcdiRWwJSGlFKUaBVLgmgWR0BVl3yNGViXdX2UKGgGaAloD0MI/U0oRMDSW8CUhpRSlGgVS0poFkdAVZiYF7laKXV9lChoBmgJaA9DCI9U3/lFxVnAlIaUUpRoFUtNaBZHQFWdiFj/dZd1fZQoaAZoCWgPQwiyDkdX6ehgwJSGlFKUaBVLbmgWR0BVnkSZjQRgdX2UKGgGaAloD0MIMe4G0VoNO8CUhpRSlGgVS4hoFkdAVaBygf2bonV9lChoBmgJaA9DCFxV9l0RJV3AlIaUUpRoFUt3aBZHQFWlinpB5X51fZQoaAZoCWgPQwiXN4drdWpywJSGlFKUaBVLhmgWR0BVpejmCAc1dX2UKGgGaAloD0MIOq5GdiU5YMCUhpRSlGgVS1BoFkdAVatCPZIxxnV9lChoBmgJaA9DCFx381SHIk3AlIaUUpRoFUtQaBZHQFWrddVvMr51fZQoaAZoCWgPQwi+2lGcoy1cwJSGlFKUaBVLZmgWR0BVrcMZxaPkdX2UKGgGaAloD0MIcodNZObUTsCUhpRSlGgVS3doFkdAVa5/7SApa3V9lChoBmgJaA9DCHuGcMwyAGLAlIaUUpRoFUtLaBZHQFWuD9wWFex1fZQoaAZoCWgPQwh72Xbami1gwJSGlFKUaBVLYGgWR0BVrvh/Aj6fdX2UKGgGaAloD0MIls/yPLgQXcCUhpRSlGgVS1RoFkdAVbLaxoqTbHV9lChoBmgJaA9DCLpKd9fZRVnAlIaUUpRoFUtWaBZHQFW1Xt0FKTV1fZQoaAZoCWgPQwinzw64rsRfwJSGlFKUaBVLU2gWR0BVtdMj/uLKdX2UKGgGaAloD0MI+IxEaASnTMCUhpRSlGgVS1RoFkdAVbbqKP4mC3V9lChoBmgJaA9DCLK7QEmBllXAlIaUUpRoFUtMaBZHQFXBKwpvxYt1fZQoaAZoCWgPQwgCnUmbqtdewJSGlFKUaBVLU2gWR0BVw4KMNtqIdX2UKGgGaAloD0MIYoGv6Na3ScCUhpRSlGgVS0doFkdAVcTJcPe54HV9lChoBmgJaA9DCFd2weCan1LAlIaUUpRoFUtBaBZHQFXFoSteUpx1fZQoaAZoCWgPQwhmLnB5rLJmwJSGlFKUaBVLZmgWR0BVxXu3MINWdX2UKGgGaAloD0MIjBL0F3r1WMCUhpRSlGgVS0RoFkdAVcYvUSZjQXV9lChoBmgJaA9DCB42kZkLJFXAlIaUUpRoFUtMaBZHQFXHFFlTWG11fZQoaAZoCWgPQwjbpKKxdp5owJSGlFKUaBVLf2gWR0BVzISlFc6edX2UKGgGaAloD0MIVFc+y/PcWsCUhpRSlGgVS0hoFkdAVc0yhzvJBHV9lChoBmgJaA9DCJw24zTEemfAlIaUUpRoFUuEaBZHQFXNxN7Bwdd1fZQoaAZoCWgPQwgFoidlUkPBP5SGlFKUaBVLkmgWR0BVzvci4axYdX2UKGgGaAloD0MIr0M1JVm4VMCUhpRSlGgVS0BoFkdAVc6ii7Ciy3V9lChoBmgJaA9DCJrN4zCY/1TAlIaUUpRoFUtdaBZHQFXPtD2Jzkp1fZQoaAZoCWgPQwgiOZm4VQlfwJSGlFKUaBVLamgWR0BV1XDvVmSRdX2UKGgGaAloD0MI6KT3ja8kVcCUhpRSlGgVSz9oFkdAVdsOvt+kQHV9lChoBmgJaA9DCEfIQJ5dVlLAlIaUUpRoFUtGaBZHQFXhLm6oVEd1fZQoaAZoCWgPQwg3je21IPtrwJSGlFKUaBVLX2gWR0BV5h5LRKHxdX2UKGgGaAloD0MID5iHTPnQUMCUhpRSlGgVS0BoFkdAVejCBPKuCHV9lChoBmgJaA9DCBDK+ziaK1fAlIaUUpRoFUuDaBZHQFXo8m8dxQ11fZQoaAZoCWgPQwjhsgqbAZBjwJSGlFKUaBVLXGgWR0BV6sGxD9fkdX2UKGgGaAloD0MICMcse5LEb8CUhpRSlGgVS45oFkdAVe0H7gsK9nV9lChoBmgJaA9DCFVQUfUrb1jAlIaUUpRoFUtGaBZHQFXs9n9Nvfl1fZQoaAZoCWgPQwhcA1slWNVawJSGlFKUaBVLTmgWR0BV7tP557gLdX2UKGgGaAloD0MIcy7FVWWgUcCUhpRSlGgVS1JoFkdAVe+auwHJLnV9lChoBmgJaA9DCDEJF/IIz2bAlIaUUpRoFUtxaBZHQFXyaUA1ejV1fZQoaAZoCWgPQwjoFroSgW1jwJSGlFKUaBVLcmgWR0BV80UoKD02dX2UKGgGaAloD0MI+UogJXZ5c8CUhpRSlGgVS29oFkdAVfOvjfek6HV9lChoBmgJaA9DCKBQTx+Bp1rAlIaUUpRoFUtnaBZHQFX2DGLk0aZ1fZQoaAZoCWgPQwiQ9GkV/VtrwJSGlFKUaBVLcGgWR0BV+fdl/YrbdX2UKGgGaAloD0MIu7a3W5INXcCUhpRSlGgVS0xoFkdAVfq1Bt1p03V9lChoBmgJaA9DCHlb6bXZiFTAlIaUUpRoFUtpaBZHQFX/ZnctXgd1fZQoaAZoCWgPQwgiN8MN+CJLwJSGlFKUaBVLRmgWR0BWBLIkqto0dX2UKGgGaAloD0MIRgn6Cz1RV8CUhpRSlGgVS0xoFkdAVgVfZ26kI3V9lChoBmgJaA9DCHdNSGsM8WPAlIaUUpRoFUteaBZHQFYMeEZiuuB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f2c84c0350c2eff5a2a8efcf54326ddd48b83c37dcc8bf5c0b3ab873a509cfd
3
+ size 143910
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcbe3afc320>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcbe3afc3b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcbe3afc440>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcbe3afc4d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fcbe3afc560>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fcbe3afc5f0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcbe3afc680>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fcbe3afc710>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcbe3afc7a0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcbe3afc830>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcbe3afc8c0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fcbe3b4e4b0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 65536,
46
+ "_total_timesteps": 50000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652100329.957701,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrDtjyxibY/Ml4+P+MWVD7JcL68Yp76vQAAAAAAAAAA4Hx7vm+gVT2/dRu+xwKkvzZt1r7W2ES+AAAAAAAAAAAzuRQ8cF9DP3pnMj6j04S/7y4pv06iHL4AAAAAAAAAAFpk5L3R8IE/BiTyvlqXcr/8vew8DP0bvQAAAAAAAAAAjVAPPglgRT+euKg9F0JDv86u/T5u0so+AAAAAAAAAACSxTm/PVZgPnveeb9zqoW/txJMPtsKMr4AAAAAAAAAAA1N5j1864o/swLZPXOdG78/dSk+IqoqPgAAAAAAAAAA08P4PlHpJD5Gc0o/v9a7v43NqL1CQgo/AAAAAAAAAAATC5A+O4i9PnKe7z7X9aC/8fknvqyIGz4AAAAAAAAAAACRPj2M0h0/2sWWPnb/iL+/lia/znPRvgAAAAAAAAAAvnYYPyGogD6z9Rw/Ei6ov3Fqpz7eXoU+AAAAAAAAAABwnBk/WFzpPtMRhj+b8ou/YMn6vvdCEj4AAAAAAAAAAI0znr0ECaA/TqO+vqdzBr+51ZO9OE+QvQAAAAAAAAAAM/amPoArcD8ytMk+Y0McvzgnID6oV1M+AAAAAAAAAACTyWY+O7BYP9niET/Vu2e/spIVv27OLb4AAAAAAAAAAGBJe75JS6A/rLU8v+Qnyr7p0Ls+arkQPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.3107200000000001,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzoqoiT53XsCUhpRSlIwBbJRLaYwBdJRHQFUfWattALR1fZQoaAZoCWgPQwidu10vTThfwJSGlFKUaBVLhWgWR0BVH/aDf3vhdX2UKGgGaAloD0MIZeQs7GmOWMCUhpRSlGgVS2RoFkdAVSKuyNXHR3V9lChoBmgJaA9DCFFNSdbhv1LAlIaUUpRoFUs7aBZHQFUpo2XLNfR1fZQoaAZoCWgPQwh8YTJVsBNgwJSGlFKUaBVLcWgWR0BVKe8K5TZQdX2UKGgGaAloD0MIiQrVzcXgW8CUhpRSlGgVS2ZoFkdAVTPPJJXhfnV9lChoBmgJaA9DCOQxA5XxjFrAlIaUUpRoFUtoaBZHQFU1zfrKNhp1fZQoaAZoCWgPQwgbSBebVq9TwJSGlFKUaBVLUmgWR0BVOiqQzUI+dX2UKGgGaAloD0MIjNmSVRF/X8CUhpRSlGgVS3doFkdAVTneIl+mWXV9lChoBmgJaA9DCBRAMbJkMjjAlIaUUpRoFUtkaBZHQFU61Tzd1uB1fZQoaAZoCWgPQwh9sIwNXaJpwJSGlFKUaBVLg2gWR0BVPSvC/GlzdX2UKGgGaAloD0MIz/Onjep3XMCUhpRSlGgVS2doFkdAVT3QiRnvlXV9lChoBmgJaA9DCNDTgEHSp7m/lIaUUpRoFUttaBZHQFVBWEsasIV1fZQoaAZoCWgPQwjs20lE+IhcwJSGlFKUaBVLg2gWR0BVQZPM0P6LdX2UKGgGaAloD0MIwFq1a0KiWsCUhpRSlGgVS39oFkdAVUI8PnSv1XV9lChoBmgJaA9DCH3rw3qje1rAlIaUUpRoFUtsaBZHQFVH72L5ylx1fZQoaAZoCWgPQwg7pu7KLvpiwJSGlFKUaBVLimgWR0BVSehXbM5fdX2UKGgGaAloD0MIKjkn9tANXMCUhpRSlGgVS1loFkdAVUrjJdSl33V9lChoBmgJaA9DCFq77UJzAlTAlIaUUpRoFUtDaBZHQFVM4Ajps411fZQoaAZoCWgPQwgoJ9pVCJ1xwJSGlFKUaBVLYWgWR0BVThOpKjBVdX2UKGgGaAloD0MIqwX2mEjpCcCUhpRSlGgVS4RoFkdAVVNG0/nnuHV9lChoBmgJaA9DCL5O6stS823AlIaUUpRoFUuQaBZHQFVUawljVhF1fZQoaAZoCWgPQwifymlPycZhwJSGlFKUaBVLR2gWR0BVVLLlmvnsdX2UKGgGaAloD0MItK88SE9hWMCUhpRSlGgVS0RoFkdAVVrylN1yNnV9lChoBmgJaA9DCOVFJuBXJmDAlIaUUpRoFUtYaBZHQFVdbWVeKKp1fZQoaAZoCWgPQwjJPsiyYCZfwJSGlFKUaBVLVGgWR0BVYGr4nF5wdX2UKGgGaAloD0MIAb9GkiCcW8CUhpRSlGgVS2loFkdAVWFgE2YOUnV9lChoBmgJaA9DCLlvtU7c+GTAlIaUUpRoFUt2aBZHQFViFPSDyvt1fZQoaAZoCWgPQwj9MhgjEnVSwJSGlFKUaBVLcmgWR0BVZCz9jwx4dX2UKGgGaAloD0MIc2VQbXCpWcCUhpRSlGgVS2loFkdAVWSlyimEXnV9lChoBmgJaA9DCOnuOhtywGfAlIaUUpRoFUtmaBZHQFVm9lmOEM91fZQoaAZoCWgPQwhSRfEqa7xTwJSGlFKUaBVLXmgWR0BVbKZx7zCldX2UKGgGaAloD0MIsvLLYAzWZMCUhpRSlGgVS2hoFkdAVW5KjBVMmHV9lChoBmgJaA9DCPORlPSwPmLAlIaUUpRoFUtiaBZHQFVvHEdeY2N1fZQoaAZoCWgPQwg/q8yU1oNkwJSGlFKUaBVLYWgWR0BVcQjps41hdX2UKGgGaAloD0MIZK4Mqo0ba8CUhpRSlGgVS2RoFkdAVXNjgAIY33V9lChoBmgJaA9DCFDG+DB7wFrAlIaUUpRoFUtYaBZHQFV0RW912aF1fZQoaAZoCWgPQwh2cRsN4IhuwJSGlFKUaBVLYGgWR0BVeFUQ04zadX2UKGgGaAloD0MIy7+WV66FZcCUhpRSlGgVS0toFkdAVXxz3h4t6HV9lChoBmgJaA9DCGoV/aGZuFLAlIaUUpRoFUtLaBZHQFV/SFXaJyh1fZQoaAZoCWgPQwi+MQQAx8JfwJSGlFKUaBVLYGgWR0BVgLDqGDcudX2UKGgGaAloD0MI3UCBd3JcZ8CUhpRSlGgVS2hoFkdAVYZvm5lOGnV9lChoBmgJaA9DCB+5Nem2J1rAlIaUUpRoFUt/aBZHQFWKCSidrft1fZQoaAZoCWgPQwigqGxYU/NuwJSGlFKUaBVLl2gWR0BVjJyQxN7CdX2UKGgGaAloD0MI+z+H+fKfZMCUhpRSlGgVS3RoFkdAVYzfk3juKHV9lChoBmgJaA9DCB3nNuFe/mjAlIaUUpRoFUt4aBZHQFWQ+HrQgLZ1fZQoaAZoCWgPQwhPzHoxFAliwJSGlFKUaBVLYmgWR0BVkuYplSTAdX2UKGgGaAloD0MIZ2DkZU11Y8CUhpRSlGgVS2VoFkdAVZTkPtlZo3V9lChoBmgJaA9DCAyVfy2v61/AlIaUUpRoFUtlaBZHQFWWqebutwJ1fZQoaAZoCWgPQwgpz7wcdiRWwJSGlFKUaBVLgmgWR0BVl3yNGViXdX2UKGgGaAloD0MI/U0oRMDSW8CUhpRSlGgVS0poFkdAVZiYF7laKXV9lChoBmgJaA9DCI9U3/lFxVnAlIaUUpRoFUtNaBZHQFWdiFj/dZd1fZQoaAZoCWgPQwiyDkdX6ehgwJSGlFKUaBVLbmgWR0BVnkSZjQRgdX2UKGgGaAloD0MIMe4G0VoNO8CUhpRSlGgVS4hoFkdAVaBygf2bonV9lChoBmgJaA9DCFxV9l0RJV3AlIaUUpRoFUt3aBZHQFWlinpB5X51fZQoaAZoCWgPQwiXN4drdWpywJSGlFKUaBVLhmgWR0BVpejmCAc1dX2UKGgGaAloD0MIOq5GdiU5YMCUhpRSlGgVS1BoFkdAVatCPZIxxnV9lChoBmgJaA9DCFx381SHIk3AlIaUUpRoFUtQaBZHQFWrddVvMr51fZQoaAZoCWgPQwi+2lGcoy1cwJSGlFKUaBVLZmgWR0BVrcMZxaPkdX2UKGgGaAloD0MIcodNZObUTsCUhpRSlGgVS3doFkdAVa5/7SApa3V9lChoBmgJaA9DCHuGcMwyAGLAlIaUUpRoFUtLaBZHQFWuD9wWFex1fZQoaAZoCWgPQwh72Xbami1gwJSGlFKUaBVLYGgWR0BVrvh/Aj6fdX2UKGgGaAloD0MIls/yPLgQXcCUhpRSlGgVS1RoFkdAVbLaxoqTbHV9lChoBmgJaA9DCLpKd9fZRVnAlIaUUpRoFUtWaBZHQFW1Xt0FKTV1fZQoaAZoCWgPQwinzw64rsRfwJSGlFKUaBVLU2gWR0BVtdMj/uLKdX2UKGgGaAloD0MI+IxEaASnTMCUhpRSlGgVS1RoFkdAVbbqKP4mC3V9lChoBmgJaA9DCLK7QEmBllXAlIaUUpRoFUtMaBZHQFXBKwpvxYt1fZQoaAZoCWgPQwgCnUmbqtdewJSGlFKUaBVLU2gWR0BVw4KMNtqIdX2UKGgGaAloD0MIYoGv6Na3ScCUhpRSlGgVS0doFkdAVcTJcPe54HV9lChoBmgJaA9DCFd2weCan1LAlIaUUpRoFUtBaBZHQFXFoSteUpx1fZQoaAZoCWgPQwhmLnB5rLJmwJSGlFKUaBVLZmgWR0BVxXu3MINWdX2UKGgGaAloD0MIjBL0F3r1WMCUhpRSlGgVS0RoFkdAVcYvUSZjQXV9lChoBmgJaA9DCB42kZkLJFXAlIaUUpRoFUtMaBZHQFXHFFlTWG11fZQoaAZoCWgPQwjbpKKxdp5owJSGlFKUaBVLf2gWR0BVzISlFc6edX2UKGgGaAloD0MIVFc+y/PcWsCUhpRSlGgVS0hoFkdAVc0yhzvJBHV9lChoBmgJaA9DCJw24zTEemfAlIaUUpRoFUuEaBZHQFXNxN7Bwdd1fZQoaAZoCWgPQwgFoidlUkPBP5SGlFKUaBVLkmgWR0BVzvci4axYdX2UKGgGaAloD0MIr0M1JVm4VMCUhpRSlGgVS0BoFkdAVc6ii7Ciy3V9lChoBmgJaA9DCJrN4zCY/1TAlIaUUpRoFUtdaBZHQFXPtD2Jzkp1fZQoaAZoCWgPQwgiOZm4VQlfwJSGlFKUaBVLamgWR0BV1XDvVmSRdX2UKGgGaAloD0MI6KT3ja8kVcCUhpRSlGgVSz9oFkdAVdsOvt+kQHV9lChoBmgJaA9DCEfIQJ5dVlLAlIaUUpRoFUtGaBZHQFXhLm6oVEd1fZQoaAZoCWgPQwg3je21IPtrwJSGlFKUaBVLX2gWR0BV5h5LRKHxdX2UKGgGaAloD0MID5iHTPnQUMCUhpRSlGgVS0BoFkdAVejCBPKuCHV9lChoBmgJaA9DCBDK+ziaK1fAlIaUUpRoFUuDaBZHQFXo8m8dxQ11fZQoaAZoCWgPQwjhsgqbAZBjwJSGlFKUaBVLXGgWR0BV6sGxD9fkdX2UKGgGaAloD0MICMcse5LEb8CUhpRSlGgVS45oFkdAVe0H7gsK9nV9lChoBmgJaA9DCFVQUfUrb1jAlIaUUpRoFUtGaBZHQFXs9n9Nvfl1fZQoaAZoCWgPQwhcA1slWNVawJSGlFKUaBVLTmgWR0BV7tP557gLdX2UKGgGaAloD0MIcy7FVWWgUcCUhpRSlGgVS1JoFkdAVe+auwHJLnV9lChoBmgJaA9DCDEJF/IIz2bAlIaUUpRoFUtxaBZHQFXyaUA1ejV1fZQoaAZoCWgPQwjoFroSgW1jwJSGlFKUaBVLcmgWR0BV80UoKD02dX2UKGgGaAloD0MI+UogJXZ5c8CUhpRSlGgVS29oFkdAVfOvjfek6HV9lChoBmgJaA9DCKBQTx+Bp1rAlIaUUpRoFUtnaBZHQFX2DGLk0aZ1fZQoaAZoCWgPQwiQ9GkV/VtrwJSGlFKUaBVLcGgWR0BV+fdl/YrbdX2UKGgGaAloD0MIu7a3W5INXcCUhpRSlGgVS0xoFkdAVfq1Bt1p03V9lChoBmgJaA9DCHlb6bXZiFTAlIaUUpRoFUtpaBZHQFX/ZnctXgd1fZQoaAZoCWgPQwgiN8MN+CJLwJSGlFKUaBVLRmgWR0BWBLIkqto0dX2UKGgGaAloD0MIRgn6Cz1RV8CUhpRSlGgVS0xoFkdAVgVfZ26kI3V9lChoBmgJaA9DCHdNSGsM8WPAlIaUUpRoFUteaBZHQFYMeEZiuuB1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 16,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3566eb6071a9ddf2168a419fb472bbfe8ec73c14e62be2f249a5e73fc6cb1ff9
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8209d6e6c1f53763b3af37e9beb1271a81c120cbc889edb0f2b073c927f14761
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:273475c7ed04fb667e878ada5165cc338fed083efbb12c9244b6911af7967982
3
+ size 229622
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 82.51272194532211, "std_reward": 98.78419574572392, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T12:47:46.946131"}