danurahul commited on
Commit
403abdd
1 Parent(s): 8124214

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -15
README.md CHANGED
@@ -49,15 +49,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
49
  # Preprocessing the datasets.
50
  # We need to read the aduio files as arrays
51
  def speech_file_to_array_fn(batch):
52
- \\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
53
- \\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
54
- \\treturn batch
55
 
56
  test_dataset = test_dataset.map(speech_file_to_array_fn)
57
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
58
 
59
  with torch.no_grad():
60
- \\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
61
 
62
  predicted_ids = torch.argmax(logits, dim=-1)
63
 
@@ -88,30 +88,30 @@ model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN")
88
 
89
  model.to("cuda")
90
 
91
- chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“\\\\%\\\\‘\\\\”\\\\�]'
92
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
93
 
94
  # Preprocessing the datasets.
95
  # We need to read the aduio files as arrays
96
  def speech_file_to_array_fn(batch):
97
- \\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
98
- \\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
99
- \\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
100
- \\treturn batch
101
 
102
  test_dataset = test_dataset.map(speech_file_to_array_fn)
103
 
104
  # Preprocessing the datasets.
105
  # We need to read the aduio files as arrays
106
  def evaluate(batch):
107
- \\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
108
 
109
- \\twith torch.no_grad():
110
- \\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
111
 
112
- \\tpred_ids = torch.argmax(logits, dim=-1)
113
- \\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
114
- \\treturn batch
115
 
116
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
117
 
 
49
  # Preprocessing the datasets.
50
  # We need to read the aduio files as arrays
51
  def speech_file_to_array_fn(batch):
52
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
53
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
54
+ return batch
55
 
56
  test_dataset = test_dataset.map(speech_file_to_array_fn)
57
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
58
 
59
  with torch.no_grad():
60
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
61
 
62
  predicted_ids = torch.argmax(logits, dim=-1)
63
 
 
88
 
89
  model.to("cuda")
90
 
91
+ chars_to_ignore_regex = '[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\“\\\\\\\\%\\\\\\\\‘\\\\\\\\”\\\\\\\\�]'
92
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
93
 
94
  # Preprocessing the datasets.
95
  # We need to read the aduio files as arrays
96
  def speech_file_to_array_fn(batch):
97
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
98
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
99
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
100
+ return batch
101
 
102
  test_dataset = test_dataset.map(speech_file_to_array_fn)
103
 
104
  # Preprocessing the datasets.
105
  # We need to read the aduio files as arrays
106
  def evaluate(batch):
107
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
108
 
109
+ with torch.no_grad():
110
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
111
 
112
+ pred_ids = torch.argmax(logits, dim=-1)
113
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
114
+ return batch
115
 
116
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
117