End of training
Browse files
README.md
CHANGED
@@ -1,74 +1,71 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
base_model: google/flan-t5-small
|
4 |
-
tags:
|
5 |
-
- generated_from_trainer
|
6 |
-
metrics:
|
7 |
-
- rouge
|
8 |
-
model-index:
|
9 |
-
- name: flan-t5-small-finetuned-question-generation
|
10 |
-
results: []
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
-
|
48 |
-
-
|
49 |
-
-
|
50 |
-
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
58 |
-
|
59 |
-
| 1.
|
60 |
-
| 1.
|
61 |
-
| 1.
|
62 |
-
| 1.
|
63 |
-
| 1.
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
-
|
72 |
-
- Pytorch 2.3.1
|
73 |
-
- Datasets 2.20.0
|
74 |
-
- Tokenizers 0.19.1
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/flan-t5-small
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- rouge
|
8 |
+
model-index:
|
9 |
+
- name: flan-t5-small-finetuned-question-generation
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# flan-t5-small-finetuned-question-generation
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.5998
|
21 |
+
- Rouge1: 50.1718
|
22 |
+
- Rouge2: 27.5603
|
23 |
+
- Rougel: 46.3981
|
24 |
+
- Rougelsum: 46.3975
|
25 |
+
- Gen Len: 13.7948
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 0.0001
|
45 |
+
- train_batch_size: 8
|
46 |
+
- eval_batch_size: 8
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 8
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
|
56 |
+
| 1.819 | 1.0 | 10913 | 1.6159 | 48.8496 | 26.1270 | 45.1331 | 45.1442 | 13.8064 |
|
57 |
+
| 1.6487 | 2.0 | 21826 | 1.5947 | 48.8142 | 26.2209 | 45.1475 | 45.1482 | 13.8229 |
|
58 |
+
| 1.5546 | 3.0 | 32739 | 1.5910 | 49.6261 | 27.1655 | 45.9472 | 45.9535 | 13.9086 |
|
59 |
+
| 1.4862 | 4.0 | 43652 | 1.5887 | 49.9953 | 27.4630 | 46.2824 | 46.2841 | 13.7223 |
|
60 |
+
| 1.4327 | 5.0 | 54565 | 1.5950 | 50.1663 | 27.6038 | 46.4602 | 46.4721 | 13.7106 |
|
61 |
+
| 1.3907 | 6.0 | 65478 | 1.5910 | 49.9510 | 27.4795 | 46.2230 | 46.2218 | 13.8172 |
|
62 |
+
| 1.3598 | 7.0 | 76391 | 1.5973 | 50.1049 | 27.4804 | 46.3268 | 46.3300 | 13.7966 |
|
63 |
+
| 1.3388 | 8.0 | 87304 | 1.5998 | 50.1718 | 27.5603 | 46.3981 | 46.3975 | 13.7948 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.42.4
|
69 |
+
- Pytorch 2.3.1
|
70 |
+
- Datasets 2.20.0
|
71 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|