danlund4's picture
First RL Agent
45bc920
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x784637da2170>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x784637da2200>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x784637da2290>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x784637da2320>",
"_build": "<function ActorCriticPolicy._build at 0x784637da23b0>",
"forward": "<function ActorCriticPolicy.forward at 0x784637da2440>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x784637da24d0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x784637da2560>",
"_predict": "<function ActorCriticPolicy._predict at 0x784637da25f0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x784637da2680>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x784637da2710>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x784637da27a0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x784637f41fc0>"
},
"verbose": 1,
"policy_kwargs": {},
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1703184352386223472,
"learning_rate": 0.0003,
"tensorboard_log": null,
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0vJz4UQeI7FKmptzCqaLUdNHw9jn/RNgAAgD8AAIA/GpOkvTgo0D3gM26+EvFTvkJQwb2NY827AAAAAAAAAACW6re+oWT6PWL1Zj6Vth++Z3cvvejwXD0AAAAAAAAAANPnDb47Iuk9oAQ8PuVUhr7ramO7QnSBPQAAAAAAAAAAYJ86vkEiYD8kjqm+fbImv2ZYMr4CL/k7AAAAAAAAAADWc1e+iA/yvF5Ulzq9bSI5qyhTPnJiy7kAAIA/AACAP00mVj0f3eO5ReactneVRDGzpLm6XvG5NQAAgD8AAAAA2jssPjakQLzRcRI7A6NUucSVpb1OdC66AACAPwAAgD8D75q+Aq8OP0H2Rr3cv/++nxw7vuSwpz0AAAAAAAAAAABMaT32fHe6Mkn0svmehLD0jPo5JlpXMwAAgD8AAIA/MwsNO2IstD8aM18+AuYWvhD8IrtyO0q9AAAAAAAAAABlbsu+MrKFPy6s7L4F/e6+zhSPvj7p8bwAAAAAAAAAANoz8j0s/G0+DqXdO3xvgL4gMgc9CmSqOwAAAAAAAAAA7hi/voDz/T7+GtK8dZC3vhAWLL6e3ak9AAAAAAAAAAC9Qk2+dEn0vGVwCLnTHAG4/KNhPt3ATjgAAIA/AACAPyPOk74HplG9UUaMurw9cLkb7bY+zpbIOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAABAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVAwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHfmYjSofmMAWyUTQYDjAF0lEdAme2tQ0oBrHV9lChoBkdAbmV30PH1e2gHS/BoCEdAme3e7UXpGHV9lChoBkdAcWHDJEH+qGgHS/1oCEdAme4gHmig03V9lChoBkdAcJvC+lCTlmgHS/BoCEdAmkc40uUUwnV9lChoBkdAbt6LApKBd2gHTZcBaAhHQJpHbONYKY11fZQoaAZHQGMyIvJzT4NoB03oA2gIR0CaSD593KSxdX2UKGgGR0BtLb0Fr2xqaAdL72gIR0CaSVu8K5TZdX2UKGgGR0BvNN89fTkRaAdLzmgIR0CaSd3wTdtVdX2UKGgGR0BwlPzpX6qLaAdL3GgIR0CaSrpnpSrHdX2UKGgGR0Bxiu0iQkonaAdL5mgIR0CaSsstTUAldX2UKGgGR0Bx9YXcgyM2aAdL+mgIR0CaTDNVR1oydX2UKGgGR0BuGEO09hZyaAdL0WgIR0CaTcpXIU8FdX2UKGgGR0BtOH0NBnjAaAdL2mgIR0CaTpizsyBTdX2UKGgGR0BzjZBIFvAHaAdL3WgIR0CaT2BjWkJsdX2UKGgGR0Btq8RpUPxyaAdL/WgIR0CaT5O0LMLXdX2UKGgGR0BwPVOBUaQ4aAdL4mgIR0CaT7ocJdB0dX2UKGgGR0Bszt6cAimmaAdL3WgIR0CaUDQV9F4LdX2UKGgGR0BxMUbfgrH3aAdNmQFoCEdAmlCcUh3aBnV9lChoBkdAcEn8jRlYl2gHS91oCEdAmlESyD7Ik3V9lChoBkdAbiZUrkKeCmgHS9hoCEdAmlFGLcbiqHV9lChoBkdAboO8an7522gHS95oCEdAmlIRGpda+3V9lChoBkdAcFrWxyGSIWgHTYIBaAhHQJpTkgKWszV1fZQoaAZHQGvFsvIwM6RoB00LAWgIR0CaU5KlpGnXdX2UKGgGR0BhzR6rvLHNaAdN6ANoCEdAmlVXpjc2znV9lChoBkdAcSPc1fmcOWgHTRUBaAhHQJpVV92HLzR1fZQoaAZHQG+Bry+YdABoB00DAWgIR0CaVkTodMkAdX2UKGgGR0Bu7dK7I1cdaAdL4mgIR0CaVp40/GEPdX2UKGgGR0Bu40jFAE+xaAdL3mgIR0CaVqzZ6D5CdX2UKGgGR0BxAWEEkjX4aAdL9GgIR0CaV3WOIZZTdX2UKGgGR0Bw03p/wy6+aAdNHAFoCEdAmle4nBtUGXV9lChoBkdAcSrb+cYqG2gHS9FoCEdAmlfYp+c6NnV9lChoBkdAcUsjQRf4RGgHS/xoCEdAmlgd3wCr93V9lChoBkdAcVTyprDZUWgHS/BoCEdAmlgjfR/mT3V9lChoBkdAcCQE8aGYbGgHS+RoCEdAmlgx59mYjXV9lChoBkdAbxnw97ngYWgHS+FoCEdAmlj4ldC3PXV9lChoBkdAcB2iRGMGYGgHS+doCEdAmlp7VawD/3V9lChoBkdAb8Ga3qiXY2gHS+doCEdAmlp75RCQcXV9lChoBkdAKpAJLM9r42gHS8xoCEdAmls+v6j323V9lChoBkdAX4foB7u2JGgHTegDaAhHQJpbYaIeo1l1fZQoaAZHQDCnGbTc6/9oB0vBaAhHQJpbxWmxdIJ1fZQoaAZHQHACdt2s7uFoB0vUaAhHQJpdh+DvmYB1fZQoaAZHQG8mEyULUkRoB0vQaAhHQJpd192HLzR1fZQoaAZHQG4oGAbyYoloB00BAWgIR0CaXiT4L1EmdX2UKGgGR0BxkKqebutwaAdL32gIR0CaXrRJVbRndX2UKGgGR0BvX+uA7PpqaAdL4mgIR0CaXrxi5NGmdX2UKGgGR0BwsQMrmQr+aAdL+WgIR0CaXv8DB/I9dX2UKGgGR0BwUr0ulGgBaAdNMgFoCEdAml+ZQk5ZKXV9lChoBkdAbWeNy5qdpmgHS+BoCEdAmmE5At4A0nV9lChoBkdAcjMyuIRAbGgHS8doCEdAmmHznNgSe3V9lChoBkdAcGIlT3qRl2gHTQkBaAhHQJpjnAXVLBd1fZQoaAZHQG9z6lk6LfloB0vWaAhHQJpkksFt8/l1fZQoaAZHQG2Y/gBLf1poB00BAmgIR0CaZTmygPEsdX2UKGgGR0BjYbvoePq+aAdN6ANoCEdAmmVOnIhhY3V9lChoBkdAcZaJZ4fOlmgHS+NoCEdAmmVjt5UtI3V9lChoBkdAcMETR6Ww/2gHS+NoCEdAmmZF3Y+SsHV9lChoBkdAb05ScbzbvmgHTQEBaAhHQJpnf655JK91fZQoaAZHQHFspFG5MDhoB00TAWgIR0CaZ8/xlQMydX2UKGgGR0BwD81gpjMFaAdL12gIR0CaaUD5TIeYdX2UKGgGR0BwG7yTY/VzaAdL/2gIR0CaagMQ2/BWdX2UKGgGR0BxTkEeQuEmaAdNbAFoCEdAmmvpGFzuGHV9lChoBkdAcZi9XcQAdWgHS9RoCEdAmmxlRYRuj3V9lChoBkdAcq7Oo5xR22gHS/loCEdAmm3qLfk3j3V9lChoBkdAcANRBeHBUWgHS/doCEdAmm3we/5+IHV9lChoBkdAc0gfVqesgmgHTU4BaAhHQJpvVmDlHSZ1fZQoaAZHQHCXkJF9a2ZoB005AWgIR0CacXNC7btadX2UKGgGR0BwFBx95QgtaAdL5GgIR0Cacbx5cC5mdX2UKGgGR0BxJRfBvaUSaAdNSAFoCEdAmnRa4MF2V3V9lChoBkdAb5VfrrxAjmgHS99oCEdAmnUHs9jgAXV9lChoBkdAcSPC79Q40mgHS+1oCEdAmnafffoA4nV9lChoBkdAccoRkmQbM2gHTTkBaAhHQJp3FHTZxrB1fZQoaAZHQHCW38O09hZoB0vVaAhHQJp3f4agmJF1fZQoaAZHQG8Mmwqy4WloB0vkaAhHQJp4Ocbzbvh1fZQoaAZHQHBjsWKuSwJoB00RAWgIR0CafOGdZq20dX2UKGgGR0BZMjlT3qRmaAdN6ANoCEdAmn3QcT8HfXV9lChoBkdAb/ovvjOs1mgHS+9oCEdAmn4XSfDk2nV9lChoBkdAYUGAJb+tKmgHTegDaAhHQJp/di+cpb51fZQoaAZHQG7nMbedkJ9oB0vYaAhHQJqAbMjeKsN1fZQoaAZHQHAbhnJ1aGJoB0vUaAhHQJqBWRSxZ+x1fZQoaAZHQGMH+yZ8a4toB03oA2gIR0CagX5NXYDldX2UKGgGR0BxrLtUn5SFaAdL1mgIR0CagbkQPI4mdX2UKGgGR0BthqMUAT7EaAdL02gIR0CageU3n6l+dX2UKGgGR0Bwk9mRNh3JaAdL0mgIR0CaglqagElmdX2UKGgGR0BjfnrSmZVoaAdN6ANoCEdAmoKUl7dBSnV9lChoBkdAcUfGlANXo2gHTUkBaAhHQJqD/gCOmzl1fZQoaAZHQGOE2+GoJiRoB03oA2gIR0CahbWOIZZTdX2UKGgGR0Bw42u1WsBAaAdL6mgIR0Cahg+fAbhndX2UKGgGR0Bz+muJUHY6aAdLwGgIR0CahlJ+2E00dX2UKGgGR0BxXjBuXNTtaAdL9mgIR0CahzvJiiItdX2UKGgGR0BuOa3qiXY2aAdL7GgIR0CaiOdhAnlXdX2UKGgGR0Bu7hxT850baAdL2WgIR0CaiUfZElVtdX2UKGgGR0BwqMEbHZK4aAdL4GgIR0CaidQTVUdadX2UKGgGR0BuhawjdHlPaAdL1mgIR0CajCvysjmkdX2UKGgGR0BxV06vJRwZaAdNCwFoCEdAmoxaPKdQPHV9lChoBkdAccK6dUbT+mgHTRABaAhHQJqM0WqLjxV1fZQoaAZHQGKcUFKTSstoB03oA2gIR0CajWznRsuWdX2UKGgGR0BxTzHwPRReaAdNWQFoCEdAmo7WE0zj3nV9lChoBkdAcbi9t/FzdWgHS+NoCEdAmo70rTYukHV9lChoBkdAcC/OFxn3+WgHS95oCEdAmo/00BOpKnV9lChoBkdAYaxew9q1xGgHTegDaAhHQJqQp/z8P4F1fZQoaAZHQHHxkvGp++doB0vlaAhHQJqR95ooNNJ1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 310,
"observation_space": {
":type:": "<class 'gymnasium.spaces.box.Box'>",
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"bounded_below": "[ True True True True True True True True]",
"bounded_above": "[ True True True True True True True True]",
"_shape": [
8
],
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
"n": "4",
"start": "0",
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"n_steps": 2048,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
}
}