danieliser
commited on
Commit
•
b7c0fd3
1
Parent(s):
c50219f
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -3.93 +/- 0.38
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:597dd2751f496fac4471cb9c3257d43ce174974cb26819cf5dc00916a1fbed78
|
3 |
+
size 108063
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2078e4eef0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f2078e51840>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1685404263371619102,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8gXrPgOLuzsHFxQ/8gXrPgOLuzsHFxQ/8gXrPgOLuzsHFxQ/8gXrPgOLuzsHFxQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwC2avzlAFD+2Oby/7pE5Px1ltT3c46U/1Vl+P4voJjw59gY9Ft2pP1GRcT53RJc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADyBes+A4u7OwcXFD/6hJg6A3hlOx+gO7zyBes+A4u7OwcXFD/6hJg6A3hlOx+gO7zyBes+A4u7OwcXFD/6hJg6A3hlOx+gO7zyBes+A4u7OwcXFD/6hJg6A3hlOx+gO7yUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.45902973 0.00572336 0.57847637]\n [0.45902973 0.00572336 0.57847637]\n [0.45902973 0.00572336 0.57847637]\n [0.45902973 0.00572336 0.57847637]]",
|
38 |
+
"desired_goal": "[[-1.2045212 0.57910496 -1.4705112 ]\n [ 0.72488296 0.08857176 1.2960162 ]\n [ 0.9935582 0.01018728 0.03294966]\n [ 1.3270595 0.2359059 0.07386106]]",
|
39 |
+
"observation": "[[ 0.45902973 0.00572336 0.57847637 0.00116363 0.00350142 -0.01145175]\n [ 0.45902973 0.00572336 0.57847637 0.00116363 0.00350142 -0.01145175]\n [ 0.45902973 0.00572336 0.57847637 0.00116363 0.00350142 -0.01145175]\n [ 0.45902973 0.00572336 0.57847637 0.00116363 0.00350142 -0.01145175]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtt77PYJRIr3+6Fw+rNwVvlsgEL4XYH4+7AYKvmV0Fr5WRoo8g7TqvCrNAj7NC5I+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.12298338 -0.03962851 0.21573254]\n [-0.14634961 -0.14074843 0.24841343]\n [-0.13479203 -0.14692838 0.01687924]\n [-0.02865053 0.12773576 0.28524628]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlnhA2ZRLA8CUhpRSlIwBbJRLMowBdJRHQKPVvzDGcWl1fZQoaAZoCWgPQwggJAuYwA0JwJSGlFKUaBVLMmgWR0Cj1X+MIeHSdX2UKGgGaAloD0MI5Q0w8x2cCsCUhpRSlGgVSzJoFkdAo9U/6CUX53V9lChoBmgJaA9DCG+e6pCb4QrAlIaUUpRoFUsyaBZHQKPU/mCiAUd1fZQoaAZoCWgPQwjfNehLb98EwJSGlFKUaBVLMmgWR0Cj1qnfdhy9dX2UKGgGaAloD0MIxvoGJjdKCMCUhpRSlGgVSzJoFkdAo9ZqZ6Uqx3V9lChoBmgJaA9DCGcrL/mfXAbAlIaUUpRoFUsyaBZHQKPWKoAn2Ix1fZQoaAZoCWgPQwhuv3yyYlgJwJSGlFKUaBVLMmgWR0Cj1ejo6jnFdX2UKGgGaAloD0MI+PvFbMlqC8CUhpRSlGgVSzJoFkdAo9eXGVAzHnV9lChoBmgJaA9DCFQ1QdR9YATAlIaUUpRoFUsyaBZHQKPXV4xk/bF1fZQoaAZoCWgPQwjOxd/2BEkEwJSGlFKUaBVLMmgWR0Cj1xed07r+dX2UKGgGaAloD0MIQwQcQpVaCsCUhpRSlGgVSzJoFkdAo9bWB4D9wXV9lChoBmgJaA9DCNXL7zSZcRTAlIaUUpRoFUsyaBZHQKPYhbY9Pk91fZQoaAZoCWgPQwgE4nX9gt0HwJSGlFKUaBVLMmgWR0Cj2EYHHFP0dX2UKGgGaAloD0MIqdvZVx40EMCUhpRSlGgVSzJoFkdAo9gGO+7DmHV9lChoBmgJaA9DCOHra11qxAbAlIaUUpRoFUsyaBZHQKPXxLDAJsx1fZQoaAZoCWgPQwhnnfF9cakJwJSGlFKUaBVLMmgWR0Cj2XSeAd4ndX2UKGgGaAloD0MI8gwa+if4E8CUhpRSlGgVSzJoFkdAo9k1AX2ugnV9lChoBmgJaA9DCGgfK/htSA3AlIaUUpRoFUsyaBZHQKPY9Qqqfe11fZQoaAZoCWgPQwgOnglNEksPwJSGlFKUaBVLMmgWR0Cj2LOGbkOqdX2UKGgGaAloD0MITpgwmpVtBsCUhpRSlGgVSzJoFkdAo9pixLTQV3V9lChoBmgJaA9DCAEvM2yUVQjAlIaUUpRoFUsyaBZHQKPaIxcmjTN1fZQoaAZoCWgPQwjUKY9uhGULwJSGlFKUaBVLMmgWR0Cj2eNL127ndX2UKGgGaAloD0MIWcNF7umKDsCUhpRSlGgVSzJoFkdAo9mhy0a6z3V9lChoBmgJaA9DCB1Z+WUwxgfAlIaUUpRoFUsyaBZHQKPbUCFsYVJ1fZQoaAZoCWgPQwgLs9DOabYKwJSGlFKUaBVLMmgWR0Cj2xDhLoOhdX2UKGgGaAloD0MIaeGyCpsBDMCUhpRSlGgVSzJoFkdAo9rQ+0PYnXV9lChoBmgJaA9DCLqj/+VaVAXAlIaUUpRoFUsyaBZHQKPaj4SHuZ11fZQoaAZoCWgPQwgyWdx/ZPoEwJSGlFKUaBVLMmgWR0Cj3D3/o7mudX2UKGgGaAloD0MIA7LXuz+OEMCUhpRSlGgVSzJoFkdAo9v+W0JF9nV9lChoBmgJaA9DCANEwYwp2AbAlIaUUpRoFUsyaBZHQKPbvmhdt2t1fZQoaAZoCWgPQwgR4zWv6swIwJSGlFKUaBVLMmgWR0Cj23zPa+N+dX2UKGgGaAloD0MIqrab4JtmDsCUhpRSlGgVSzJoFkdAo90xCMPz4HV9lChoBmgJaA9DCM2ueysSUwzAlIaUUpRoFUsyaBZHQKPc8VzIV/N1fZQoaAZoCWgPQwhrgNJQo7AEwJSGlFKUaBVLMmgWR0Cj3LFsYVIqdX2UKGgGaAloD0MIkiQIV0ABA8CUhpRSlGgVSzJoFkdAo9xv9LpRoHV9lChoBmgJaA9DCIleRrHcsgzAlIaUUpRoFUsyaBZHQKPeIpd8iOh1fZQoaAZoCWgPQwgRHJdxU6MLwJSGlFKUaBVLMmgWR0Cj3eMOPNmldX2UKGgGaAloD0MI0XZM3ZV9C8CUhpRSlGgVSzJoFkdAo92jI3irDXV9lChoBmgJaA9DCDyiQnVzMQnAlIaUUpRoFUsyaBZHQKPdYZa3Zwp1fZQoaAZoCWgPQwjhQ4mWPL4NwJSGlFKUaBVLMmgWR0Cj3xEqtozvdX2UKGgGaAloD0MITx4Wak0zCMCUhpRSlGgVSzJoFkdAo97Rs9B8hXV9lChoBmgJaA9DCKdbdoh/OAzAlIaUUpRoFUsyaBZHQKPekcMmWt51fZQoaAZoCWgPQwht4uR+hyIFwJSGlFKUaBVLMmgWR0Cj3lBEa2nbdX2UKGgGaAloD0MIlwLS/gdIEcCUhpRSlGgVSzJoFkdAo9/9aUzKtHV9lChoBmgJaA9DCFsGnKVk+Q7AlIaUUpRoFUsyaBZHQKPfvb6guh91fZQoaAZoCWgPQwgRqWkX0wwFwJSGlFKUaBVLMmgWR0Cj333qiXY2dX2UKGgGaAloD0MIY7ml1ZA4CcCUhpRSlGgVSzJoFkdAo988U47zTXV9lChoBmgJaA9DCCpwsg3cwQnAlIaUUpRoFUsyaBZHQKPg7fzjFQ51fZQoaAZoCWgPQwibc/BMaNIFwJSGlFKUaBVLMmgWR0Cj4K5YYBNmdX2UKGgGaAloD0MINstlo3NeC8CUhpRSlGgVSzJoFkdAo+BunVG0/nV9lChoBmgJaA9DCFwdAHFXDwzAlIaUUpRoFUsyaBZHQKPgLTEzfrN1fZQoaAZoCWgPQwiMahFRTG4RwJSGlFKUaBVLMmgWR0Cj4eZXuE26dX2UKGgGaAloD0MIh/vIrUmHEMCUhpRSlGgVSzJoFkdAo+GmugYgq3V9lChoBmgJaA9DCOFBs+veagXAlIaUUpRoFUsyaBZHQKPhZweeWfN1fZQoaAZoCWgPQwhgOq3boDYFwJSGlFKUaBVLMmgWR0Cj4SV50KZ2dX2UKGgGaAloD0MIvHSTGAT2BcCUhpRSlGgVSzJoFkdAo+LWE25xznV9lChoBmgJaA9DCFbXoZqSbAfAlIaUUpRoFUsyaBZHQKPilnGsFMZ1fZQoaAZoCWgPQwjAIOnTKvoJwJSGlFKUaBVLMmgWR0Cj4lZ7w8W9dX2UKGgGaAloD0MIfVuwVBcwB8CUhpRSlGgVSzJoFkdAo+IVNet0WHV9lChoBmgJaA9DCNZz0vvG1w/AlIaUUpRoFUsyaBZHQKPjx7EYO2B1fZQoaAZoCWgPQwhxWvCir4AOwJSGlFKUaBVLMmgWR0Cj44gNoakzdX2UKGgGaAloD0MI1ldXBWpxCsCUhpRSlGgVSzJoFkdAo+NIIhQm/nV9lChoBmgJaA9DCAt72uGvyRLAlIaUUpRoFUsyaBZHQKPjBrB0p3J1fZQoaAZoCWgPQwgiUP2DSGYHwJSGlFKUaBVLMmgWR0Cj5LJHqeK9dX2UKGgGaAloD0MI5l31gHmoEsCUhpRSlGgVSzJoFkdAo+RyyrxRVXV9lChoBmgJaA9DCF2MgXUcPwjAlIaUUpRoFUsyaBZHQKPkMvRqoIh1fZQoaAZoCWgPQwiSO2wiM2cXwJSGlFKUaBVLMmgWR0Cj4/F9KEnLdX2UKGgGaAloD0MIAU2EDU+vDsCUhpRSlGgVSzJoFkdAo+WgkJKJ23V9lChoBmgJaA9DCOJbWDfefQzAlIaUUpRoFUsyaBZHQKPlYO6NEPV1fZQoaAZoCWgPQwilTdU9sjkHwJSGlFKUaBVLMmgWR0Cj5SD5j6N3dX2UKGgGaAloD0MItww4S8myD8CUhpRSlGgVSzJoFkdAo+Tfb9If83V9lChoBmgJaA9DCKsHzEOm3A/AlIaUUpRoFUsyaBZHQKPmj7k4m1J1fZQoaAZoCWgPQwgXnMHfL+YNwJSGlFKUaBVLMmgWR0Cj5lABT4tZdX2UKGgGaAloD0MIxjAnaJNDCcCUhpRSlGgVSzJoFkdAo+YQJ3PiUHV9lChoBmgJaA9DCFrUJ7nDBhDAlIaUUpRoFUsyaBZHQKPlzqREF4d1fZQoaAZoCWgPQwjrGcIxy54JwJSGlFKUaBVLMmgWR0Cj53q0dBBzdX2UKGgGaAloD0MIelORCmPrEMCUhpRSlGgVSzJoFkdAo+c7BMzuW3V9lChoBmgJaA9DCAQfgxWnehDAlIaUUpRoFUsyaBZHQKPm+wsXizd1fZQoaAZoCWgPQwjVtItppjsJwJSGlFKUaBVLMmgWR0Cj5rlyR0U5dX2UKGgGaAloD0MIjQkxl1RNC8CUhpRSlGgVSzJoFkdAo+hrPMSsbXV9lChoBmgJaA9DCEp/L4UH7QzAlIaUUpRoFUsyaBZHQKPoK4S6DoR1fZQoaAZoCWgPQwi06QjgZgETwJSGlFKUaBVLMmgWR0Cj5+uYYzi0dX2UKGgGaAloD0MIBTbn4JkQEMCUhpRSlGgVSzJoFkdAo+eqDIzWPXV9lChoBmgJaA9DCKFJYkm5OwrAlIaUUpRoFUsyaBZHQKPpV2L5ylx1fZQoaAZoCWgPQwhl/WZiulANwJSGlFKUaBVLMmgWR0Cj6RevhZQpdX2UKGgGaAloD0MItg95y9XfEcCUhpRSlGgVSzJoFkdAo+jXztkWh3V9lChoBmgJaA9DCPTcQlcikA/AlIaUUpRoFUsyaBZHQKPolmvGIbh1fZQoaAZoCWgPQwjJycStgngKwJSGlFKUaBVLMmgWR0Cj6kBfjS5RdX2UKGgGaAloD0MIbCHIQQkzDcCUhpRSlGgVSzJoFkdAo+oAukDZDnV9lChoBmgJaA9DCKXz4VmCjA3AlIaUUpRoFUsyaBZHQKPpwL74zrN1fZQoaAZoCWgPQwiMMEW5NJ4LwJSGlFKUaBVLMmgWR0Cj6X9APd2xdX2UKGgGaAloD0MI48KBkCwgCMCUhpRSlGgVSzJoFkdAo+s0/6frbHV9lChoBmgJaA9DCESi0LLuPxXAlIaUUpRoFUsyaBZHQKPq9VktmL91fZQoaAZoCWgPQwilFd9Q+CwJwJSGlFKUaBVLMmgWR0Cj6rVxKg7HdX2UKGgGaAloD0MIgh/VsN8DGsCUhpRSlGgVSzJoFkdAo+pz+o99t3V9lChoBmgJaA9DCGfvjLYqqRXAlIaUUpRoFUsyaBZHQKPsIQHRkVh1fZQoaAZoCWgPQwj3AUht4tQQwJSGlFKUaBVLMmgWR0Cj6+F2FFlTdX2UKGgGaAloD0MIzzKLUGzlCsCUhpRSlGgVSzJoFkdAo+uhi7TUiXV9lChoBmgJaA9DCEzdlV0wuAXAlIaUUpRoFUsyaBZHQKPrYAmzByl1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d082cdaaea708f2c4b4735049a7f5d65ec4e6404c871d03bc02c7a375c2a172b
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b42eea0c85436183063bba20b3cdb1ade87ba6fa212992009568c649e29f58e
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2078e4eef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2078e51840>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685404263371619102, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8gXrPgOLuzsHFxQ/8gXrPgOLuzsHFxQ/8gXrPgOLuzsHFxQ/8gXrPgOLuzsHFxQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwC2avzlAFD+2Oby/7pE5Px1ltT3c46U/1Vl+P4voJjw59gY9Ft2pP1GRcT53RJc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADyBes+A4u7OwcXFD/6hJg6A3hlOx+gO7zyBes+A4u7OwcXFD/6hJg6A3hlOx+gO7zyBes+A4u7OwcXFD/6hJg6A3hlOx+gO7zyBes+A4u7OwcXFD/6hJg6A3hlOx+gO7yUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.45902973 0.00572336 0.57847637]\n [0.45902973 0.00572336 0.57847637]\n [0.45902973 0.00572336 0.57847637]\n [0.45902973 0.00572336 0.57847637]]", "desired_goal": "[[-1.2045212 0.57910496 -1.4705112 ]\n [ 0.72488296 0.08857176 1.2960162 ]\n [ 0.9935582 0.01018728 0.03294966]\n [ 1.3270595 0.2359059 0.07386106]]", "observation": "[[ 0.45902973 0.00572336 0.57847637 0.00116363 0.00350142 -0.01145175]\n [ 0.45902973 0.00572336 0.57847637 0.00116363 0.00350142 -0.01145175]\n [ 0.45902973 0.00572336 0.57847637 0.00116363 0.00350142 -0.01145175]\n [ 0.45902973 0.00572336 0.57847637 0.00116363 0.00350142 -0.01145175]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtt77PYJRIr3+6Fw+rNwVvlsgEL4XYH4+7AYKvmV0Fr5WRoo8g7TqvCrNAj7NC5I+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12298338 -0.03962851 0.21573254]\n [-0.14634961 -0.14074843 0.24841343]\n [-0.13479203 -0.14692838 0.01687924]\n [-0.02865053 0.12773576 0.28524628]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlnhA2ZRLA8CUhpRSlIwBbJRLMowBdJRHQKPVvzDGcWl1fZQoaAZoCWgPQwggJAuYwA0JwJSGlFKUaBVLMmgWR0Cj1X+MIeHSdX2UKGgGaAloD0MI5Q0w8x2cCsCUhpRSlGgVSzJoFkdAo9U/6CUX53V9lChoBmgJaA9DCG+e6pCb4QrAlIaUUpRoFUsyaBZHQKPU/mCiAUd1fZQoaAZoCWgPQwjfNehLb98EwJSGlFKUaBVLMmgWR0Cj1qnfdhy9dX2UKGgGaAloD0MIxvoGJjdKCMCUhpRSlGgVSzJoFkdAo9ZqZ6Uqx3V9lChoBmgJaA9DCGcrL/mfXAbAlIaUUpRoFUsyaBZHQKPWKoAn2Ix1fZQoaAZoCWgPQwhuv3yyYlgJwJSGlFKUaBVLMmgWR0Cj1ejo6jnFdX2UKGgGaAloD0MI+PvFbMlqC8CUhpRSlGgVSzJoFkdAo9eXGVAzHnV9lChoBmgJaA9DCFQ1QdR9YATAlIaUUpRoFUsyaBZHQKPXV4xk/bF1fZQoaAZoCWgPQwjOxd/2BEkEwJSGlFKUaBVLMmgWR0Cj1xed07r+dX2UKGgGaAloD0MIQwQcQpVaCsCUhpRSlGgVSzJoFkdAo9bWB4D9wXV9lChoBmgJaA9DCNXL7zSZcRTAlIaUUpRoFUsyaBZHQKPYhbY9Pk91fZQoaAZoCWgPQwgE4nX9gt0HwJSGlFKUaBVLMmgWR0Cj2EYHHFP0dX2UKGgGaAloD0MIqdvZVx40EMCUhpRSlGgVSzJoFkdAo9gGO+7DmHV9lChoBmgJaA9DCOHra11qxAbAlIaUUpRoFUsyaBZHQKPXxLDAJsx1fZQoaAZoCWgPQwhnnfF9cakJwJSGlFKUaBVLMmgWR0Cj2XSeAd4ndX2UKGgGaAloD0MI8gwa+if4E8CUhpRSlGgVSzJoFkdAo9k1AX2ugnV9lChoBmgJaA9DCGgfK/htSA3AlIaUUpRoFUsyaBZHQKPY9Qqqfe11fZQoaAZoCWgPQwgOnglNEksPwJSGlFKUaBVLMmgWR0Cj2LOGbkOqdX2UKGgGaAloD0MITpgwmpVtBsCUhpRSlGgVSzJoFkdAo9pixLTQV3V9lChoBmgJaA9DCAEvM2yUVQjAlIaUUpRoFUsyaBZHQKPaIxcmjTN1fZQoaAZoCWgPQwjUKY9uhGULwJSGlFKUaBVLMmgWR0Cj2eNL127ndX2UKGgGaAloD0MIWcNF7umKDsCUhpRSlGgVSzJoFkdAo9mhy0a6z3V9lChoBmgJaA9DCB1Z+WUwxgfAlIaUUpRoFUsyaBZHQKPbUCFsYVJ1fZQoaAZoCWgPQwgLs9DOabYKwJSGlFKUaBVLMmgWR0Cj2xDhLoOhdX2UKGgGaAloD0MIaeGyCpsBDMCUhpRSlGgVSzJoFkdAo9rQ+0PYnXV9lChoBmgJaA9DCLqj/+VaVAXAlIaUUpRoFUsyaBZHQKPaj4SHuZ11fZQoaAZoCWgPQwgyWdx/ZPoEwJSGlFKUaBVLMmgWR0Cj3D3/o7mudX2UKGgGaAloD0MIA7LXuz+OEMCUhpRSlGgVSzJoFkdAo9v+W0JF9nV9lChoBmgJaA9DCANEwYwp2AbAlIaUUpRoFUsyaBZHQKPbvmhdt2t1fZQoaAZoCWgPQwgR4zWv6swIwJSGlFKUaBVLMmgWR0Cj23zPa+N+dX2UKGgGaAloD0MIqrab4JtmDsCUhpRSlGgVSzJoFkdAo90xCMPz4HV9lChoBmgJaA9DCM2ueysSUwzAlIaUUpRoFUsyaBZHQKPc8VzIV/N1fZQoaAZoCWgPQwhrgNJQo7AEwJSGlFKUaBVLMmgWR0Cj3LFsYVIqdX2UKGgGaAloD0MIkiQIV0ABA8CUhpRSlGgVSzJoFkdAo9xv9LpRoHV9lChoBmgJaA9DCIleRrHcsgzAlIaUUpRoFUsyaBZHQKPeIpd8iOh1fZQoaAZoCWgPQwgRHJdxU6MLwJSGlFKUaBVLMmgWR0Cj3eMOPNmldX2UKGgGaAloD0MI0XZM3ZV9C8CUhpRSlGgVSzJoFkdAo92jI3irDXV9lChoBmgJaA9DCDyiQnVzMQnAlIaUUpRoFUsyaBZHQKPdYZa3Zwp1fZQoaAZoCWgPQwjhQ4mWPL4NwJSGlFKUaBVLMmgWR0Cj3xEqtozvdX2UKGgGaAloD0MITx4Wak0zCMCUhpRSlGgVSzJoFkdAo97Rs9B8hXV9lChoBmgJaA9DCKdbdoh/OAzAlIaUUpRoFUsyaBZHQKPekcMmWt51fZQoaAZoCWgPQwht4uR+hyIFwJSGlFKUaBVLMmgWR0Cj3lBEa2nbdX2UKGgGaAloD0MIlwLS/gdIEcCUhpRSlGgVSzJoFkdAo9/9aUzKtHV9lChoBmgJaA9DCFsGnKVk+Q7AlIaUUpRoFUsyaBZHQKPfvb6guh91fZQoaAZoCWgPQwgRqWkX0wwFwJSGlFKUaBVLMmgWR0Cj333qiXY2dX2UKGgGaAloD0MIY7ml1ZA4CcCUhpRSlGgVSzJoFkdAo988U47zTXV9lChoBmgJaA9DCCpwsg3cwQnAlIaUUpRoFUsyaBZHQKPg7fzjFQ51fZQoaAZoCWgPQwibc/BMaNIFwJSGlFKUaBVLMmgWR0Cj4K5YYBNmdX2UKGgGaAloD0MINstlo3NeC8CUhpRSlGgVSzJoFkdAo+BunVG0/nV9lChoBmgJaA9DCFwdAHFXDwzAlIaUUpRoFUsyaBZHQKPgLTEzfrN1fZQoaAZoCWgPQwiMahFRTG4RwJSGlFKUaBVLMmgWR0Cj4eZXuE26dX2UKGgGaAloD0MIh/vIrUmHEMCUhpRSlGgVSzJoFkdAo+GmugYgq3V9lChoBmgJaA9DCOFBs+veagXAlIaUUpRoFUsyaBZHQKPhZweeWfN1fZQoaAZoCWgPQwhgOq3boDYFwJSGlFKUaBVLMmgWR0Cj4SV50KZ2dX2UKGgGaAloD0MIvHSTGAT2BcCUhpRSlGgVSzJoFkdAo+LWE25xznV9lChoBmgJaA9DCFbXoZqSbAfAlIaUUpRoFUsyaBZHQKPilnGsFMZ1fZQoaAZoCWgPQwjAIOnTKvoJwJSGlFKUaBVLMmgWR0Cj4lZ7w8W9dX2UKGgGaAloD0MIfVuwVBcwB8CUhpRSlGgVSzJoFkdAo+IVNet0WHV9lChoBmgJaA9DCNZz0vvG1w/AlIaUUpRoFUsyaBZHQKPjx7EYO2B1fZQoaAZoCWgPQwhxWvCir4AOwJSGlFKUaBVLMmgWR0Cj44gNoakzdX2UKGgGaAloD0MI1ldXBWpxCsCUhpRSlGgVSzJoFkdAo+NIIhQm/nV9lChoBmgJaA9DCAt72uGvyRLAlIaUUpRoFUsyaBZHQKPjBrB0p3J1fZQoaAZoCWgPQwgiUP2DSGYHwJSGlFKUaBVLMmgWR0Cj5LJHqeK9dX2UKGgGaAloD0MI5l31gHmoEsCUhpRSlGgVSzJoFkdAo+RyyrxRVXV9lChoBmgJaA9DCF2MgXUcPwjAlIaUUpRoFUsyaBZHQKPkMvRqoIh1fZQoaAZoCWgPQwiSO2wiM2cXwJSGlFKUaBVLMmgWR0Cj4/F9KEnLdX2UKGgGaAloD0MIAU2EDU+vDsCUhpRSlGgVSzJoFkdAo+WgkJKJ23V9lChoBmgJaA9DCOJbWDfefQzAlIaUUpRoFUsyaBZHQKPlYO6NEPV1fZQoaAZoCWgPQwilTdU9sjkHwJSGlFKUaBVLMmgWR0Cj5SD5j6N3dX2UKGgGaAloD0MItww4S8myD8CUhpRSlGgVSzJoFkdAo+Tfb9If83V9lChoBmgJaA9DCKsHzEOm3A/AlIaUUpRoFUsyaBZHQKPmj7k4m1J1fZQoaAZoCWgPQwgXnMHfL+YNwJSGlFKUaBVLMmgWR0Cj5lABT4tZdX2UKGgGaAloD0MIxjAnaJNDCcCUhpRSlGgVSzJoFkdAo+YQJ3PiUHV9lChoBmgJaA9DCFrUJ7nDBhDAlIaUUpRoFUsyaBZHQKPlzqREF4d1fZQoaAZoCWgPQwjrGcIxy54JwJSGlFKUaBVLMmgWR0Cj53q0dBBzdX2UKGgGaAloD0MIelORCmPrEMCUhpRSlGgVSzJoFkdAo+c7BMzuW3V9lChoBmgJaA9DCAQfgxWnehDAlIaUUpRoFUsyaBZHQKPm+wsXizd1fZQoaAZoCWgPQwjVtItppjsJwJSGlFKUaBVLMmgWR0Cj5rlyR0U5dX2UKGgGaAloD0MIjQkxl1RNC8CUhpRSlGgVSzJoFkdAo+hrPMSsbXV9lChoBmgJaA9DCEp/L4UH7QzAlIaUUpRoFUsyaBZHQKPoK4S6DoR1fZQoaAZoCWgPQwi06QjgZgETwJSGlFKUaBVLMmgWR0Cj5+uYYzi0dX2UKGgGaAloD0MIBTbn4JkQEMCUhpRSlGgVSzJoFkdAo+eqDIzWPXV9lChoBmgJaA9DCKFJYkm5OwrAlIaUUpRoFUsyaBZHQKPpV2L5ylx1fZQoaAZoCWgPQwhl/WZiulANwJSGlFKUaBVLMmgWR0Cj6RevhZQpdX2UKGgGaAloD0MItg95y9XfEcCUhpRSlGgVSzJoFkdAo+jXztkWh3V9lChoBmgJaA9DCPTcQlcikA/AlIaUUpRoFUsyaBZHQKPolmvGIbh1fZQoaAZoCWgPQwjJycStgngKwJSGlFKUaBVLMmgWR0Cj6kBfjS5RdX2UKGgGaAloD0MIbCHIQQkzDcCUhpRSlGgVSzJoFkdAo+oAukDZDnV9lChoBmgJaA9DCKXz4VmCjA3AlIaUUpRoFUsyaBZHQKPpwL74zrN1fZQoaAZoCWgPQwiMMEW5NJ4LwJSGlFKUaBVLMmgWR0Cj6X9APd2xdX2UKGgGaAloD0MI48KBkCwgCMCUhpRSlGgVSzJoFkdAo+s0/6frbHV9lChoBmgJaA9DCESi0LLuPxXAlIaUUpRoFUsyaBZHQKPq9VktmL91fZQoaAZoCWgPQwilFd9Q+CwJwJSGlFKUaBVLMmgWR0Cj6rVxKg7HdX2UKGgGaAloD0MIgh/VsN8DGsCUhpRSlGgVSzJoFkdAo+pz+o99t3V9lChoBmgJaA9DCGfvjLYqqRXAlIaUUpRoFUsyaBZHQKPsIQHRkVh1fZQoaAZoCWgPQwj3AUht4tQQwJSGlFKUaBVLMmgWR0Cj6+F2FFlTdX2UKGgGaAloD0MIzzKLUGzlCsCUhpRSlGgVSzJoFkdAo+uhi7TUiXV9lChoBmgJaA9DCEzdlV0wuAXAlIaUUpRoFUsyaBZHQKPrYAmzByl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (879 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -3.934491936303675, "std_reward": 0.378439126071372, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-30T00:33:37.149874"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b860f4cff08b8f210efbb24e459118a229a2398fba14a6afa271e716f611db4
|
3 |
+
size 2387
|