danie94-lml commited on
Commit
c166bbf
1 Parent(s): b8c39b2

Upload PPO LunarLander-v3 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 261.55 +/- 21.17
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcac6b4d160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcac6b4d1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcac6b4d280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcac6b4d310>", "_build": "<function ActorCriticPolicy._build at 0x7fcac6b4d3a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fcac6b4d430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcac6b4d4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcac6b4d550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcac6b4d5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcac6b4d670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcac6b4d700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcac6b485d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670287004581821552, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJp9BrzD/DE9zghHvYrYXL56fsG82MpxvQAAAAAAAAAA5i8fvVyzJbppmIM7cna6NmWirjluD5q6AACAPwAAgD+aC++8SBuNutmeNDqvJpM1iyVHO1zkiDQAAIA/AACAP5pNR724xs25lolXu/ccfrZYwYs6rad7OgAAgD8AAIA/uqIfvlrVYj4b6dQ8SqixvvLc4bzDm2q9AAAAAAAAAAAzkJ+99gRlut5YBLgWLwqzpj+sOtORGzcAAIA/AACAPzM1aL3DmXq6Dx6EMMHA8jCg2ti5sn5JMgAAgD8AAIA/ZqvGva4dh7qWeTK4IiAls09yw7rlt083AACAPwAAgD9m4B08w/06umVC5DgUd3c2LCdpuz5JBrgAAIA/AACAP40tk71ht7095VXyPHYvY77MJNa8rzLAPQAAAAAAAAAAWuDLvXukgLqjb90399teMxxgLzsru/22AACAPwAAgD+aGx69KeAVuojQWze81L4xe2GWucIhf7YAAIA/AACAP5oUCj1SOIU4U7Ohu3UfNDj1hv+73ymcNwAAgD8AAIA/5uSFPamMGz+OXPm9+kuuvsE68rwBEI69AAAAAAAAAABNeye9iJKuPmr/ID5MB4e+a1AaPXjT8z0AAAAAAAAAALMfLb3DiRK6gv1LOBvSgjMd01Y6RgtptwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIB2LZzCEJY0CUhpRSlIwBbJRN6AOMAXSUR0CWVLBI4EOidX2UKGgGaAloD0MIqP+s+fFoaECUhpRSlGgVTegDaBZHQJZVTvkRzzV1fZQoaAZoCWgPQwjsE0Axso5oQJSGlFKUaBVN6ANoFkdAllkkwBYFJXV9lChoBmgJaA9DCMu5FFeV+0NAlIaUUpRoFUvIaBZHQJZgMcyWRih1fZQoaAZoCWgPQwhTXcDLDBdmQJSGlFKUaBVN6ANoFkdAlmFhVhkRSXV9lChoBmgJaA9DCKG6ufjbMkRAlIaUUpRoFUu5aBZHQJZjVpmEoOR1fZQoaAZoCWgPQwiz7h8L0cZmQJSGlFKUaBVN6ANoFkdAlmP5SNwR5HV9lChoBmgJaA9DCIqT+x2KpGZAlIaUUpRoFU3oA2gWR0CWZgo4dZJTdX2UKGgGaAloD0MIO1J955dBYUCUhpRSlGgVTegDaBZHQJZoYhIOH311fZQoaAZoCWgPQwgQdLSqJZ9kQJSGlFKUaBVN6ANoFkdAlmiQWvbGm3V9lChoBmgJaA9DCEvMs5JWF2NAlIaUUpRoFU3oA2gWR0CWaWhM8HObdX2UKGgGaAloD0MI6L8Hr93mZUCUhpRSlGgVTegDaBZHQJZqNHDrJKd1fZQoaAZoCWgPQwg5KGGm7YZjQJSGlFKUaBVN6ANoFkdAlsz3Snccl3V9lChoBmgJaA9DCHtNDwpKNmZAlIaUUpRoFU3oA2gWR0CW0I0A93bFdX2UKGgGaAloD0MINlfNc0T3cECUhpRSlGgVTQsDaBZHQJbWJFWn0kJ1fZQoaAZoCWgPQwhfe2ZJAOBpQJSGlFKUaBVN6ANoFkdAltYljAi3X3V9lChoBmgJaA9DCKwcWmS7YWRAlIaUUpRoFU3oA2gWR0CW2MFrEcbSdX2UKGgGaAloD0MI9P3UeGlScECUhpRSlGgVTTwCaBZHQJbf7cGkep51fZQoaAZoCWgPQwh4R8Zqc1BjQJSGlFKUaBVN6ANoFkdAluIl3yI553V9lChoBmgJaA9DCGRYxRuZHVBAlIaUUpRoFUuCaBZHQJbmMmkWRA91fZQoaAZoCWgPQwgmAWpqWaNjQJSGlFKUaBVN6ANoFkdAluehnanJk3V9lChoBmgJaA9DCNbgfVWuFWVAlIaUUpRoFU3oA2gWR0CW8kE/0NBodX2UKGgGaAloD0MIqG3DKIhnaECUhpRSlGgVTegDaBZHQJbzVKcurZJ1fZQoaAZoCWgPQwhszOuIQxJkQJSGlFKUaBVN6ANoFkdAlvWs0Ltu1nV9lChoBmgJaA9DCGzqPCr+lmNAlIaUUpRoFU3oA2gWR0CW96sySFGodX2UKGgGaAloD0MIVMcqpWciZECUhpRSlGgVTegDaBZHQJb54HVwxWV1fZQoaAZoCWgPQwjeWbvtQtpmQJSGlFKUaBVN6ANoFkdAlvoN/BnBcnV9lChoBmgJaA9DCEpATMIFMmZAlIaUUpRoFU3oA2gWR0CW+tHNHH3ldX2UKGgGaAloD0MIdhcoKTCSYUCUhpRSlGgVTegDaBZHQJb7iraM72d1fZQoaAZoCWgPQwhZ/Kaw0kxkQJSGlFKUaBVN6ANoFkdAlvxU2UB4lnV9lChoBmgJaA9DCH2zzY3pXUlAlIaUUpRoFUvWaBZHQJb8zGaQV9F1fZQoaAZoCWgPQwjXogVo2y1iQJSGlFKUaBVN6ANoFkdAlv+fOD8Lr3V9lChoBmgJaA9DCANC6+HLR1NAlIaUUpRoFUuwaBZHQJcAzTTfBN51fZQoaAZoCWgPQwizQSYZuSNuQJSGlFKUaBVNlgNoFkdAlwEP1lGwzXV9lChoBmgJaA9DCHHLR1LS7GVAlIaUUpRoFU3oA2gWR0CXBEm3fAKwdX2UKGgGaAloD0MIbSBdbFrqZECUhpRSlGgVTegDaBZHQJcGmyxA0Kt1fZQoaAZoCWgPQwjkolpEVIxyQJSGlFKUaBVNKgJoFkdAlw3Isqaw2XV9lChoBmgJaA9DCN9t3jgpqGNAlIaUUpRoFU3oA2gWR0CXEIqlxffGdX2UKGgGaAloD0MIMqt3uF01cUCUhpRSlGgVTbwBaBZHQJcQqNo8IRh1fZQoaAZoCWgPQwgvpS4ZRyJnQJSGlFKUaBVN6ANoFkdAlxRy704BFXV9lChoBmgJaA9DCAE1tWyty2RAlIaUUpRoFU3oA2gWR0CXFcEMspXqdX2UKGgGaAloD0MINuUK7zIPcECUhpRSlGgVTeEBaBZHQJcXJQ/HHWB1fZQoaAZoCWgPQwg5fqg04q5hQJSGlFKUaBVN6ANoFkdAlx8EDEFW4nV9lChoBmgJaA9DCPOPvklTKmZAlIaUUpRoFU3oA2gWR0CXJIKHwgDBdX2UKGgGaAloD0MIzuDvFzMrZECUhpRSlGgVTegDaBZHQJcm6K2rn1Z1fZQoaAZoCWgPQwhtPNhit+lmQJSGlFKUaBVN6ANoFkdAlyf3+dbxE3V9lChoBmgJaA9DCPPMy2H3amlAlIaUUpRoFU3oA2gWR0CXKNFJxvNvdX2UKGgGaAloD0MIY9LfS2EpaUCUhpRSlGgVTegDaBZHQJcpuuq3mV91fZQoaAZoCWgPQwhHAaJgRr1iQJSGlFKUaBVN6ANoFkdAl5Cf7rLQonV9lChoBmgJaA9DCL3hPnJrUkVAlIaUUpRoFUutaBZHQJeRiBDohZB1fZQoaAZoCWgPQwgoSddMvh9lQJSGlFKUaBVN6ANoFkdAl5IJ9uxbCHV9lChoBmgJaA9DCJRqn45HmmRAlIaUUpRoFU3oA2gWR0CXlU8Q7LdOdX2UKGgGaAloD0MIv7fpz35JZ0CUhpRSlGgVTegDaBZHQJeXfhQ3xWl1fZQoaAZoCWgPQwhENpAuNsBSQJSGlFKUaBVLomgWR0CXmAPPcBU8dX2UKGgGaAloD0MIkwGgihsvbkCUhpRSlGgVTc4CaBZHQJeYfz7MxGl1fZQoaAZoCWgPQwhsXP+uT/hiQJSGlFKUaBVN6ANoFkdAl50s/D+BH3V9lChoBmgJaA9DCFMgs7PohURAlIaUUpRoFUu4aBZHQJee6Btk4FR1fZQoaAZoCWgPQwiw5CoWP1ZjQJSGlFKUaBVN6ANoFkdAl59lxwQ18HV9lChoBmgJaA9DCMssQrGV0mdAlIaUUpRoFU3oA2gWR0CXn35WzWwvdX2UKGgGaAloD0MIx4Ds9W5scECUhpRSlGgVTfABaBZHQJeg7Ip6QeV1fZQoaAZoCWgPQwghkiHH1glvQJSGlFKUaBVNmANoFkdAl6G/Ho5ggHV9lChoBmgJaA9DCFLWbyYmmGNAlIaUUpRoFU3oA2gWR0CXoosSCe3AdX2UKGgGaAloD0MIA15m2KizYkCUhpRSlGgVTegDaBZHQJesoVKwpvx1fZQoaAZoCWgPQwhavcPtUPBxQJSGlFKUaBVNPQJoFkdAl6yifthNNHV9lChoBmgJaA9DCLg+rDcq8HJAlIaUUpRoFU1tAWgWR0CXscm+TNdJdX2UKGgGaAloD0MIwakPJG9QaECUhpRSlGgVTegDaBZHQJeyEG/vfCR1fZQoaAZoCWgPQwgg1bDfk1dyQJSGlFKUaBVNlQFoFkdAl7Kuuieum3V9lChoBmgJaA9DCOXQItv5GjpAlIaUUpRoFUuqaBZHQJe00EX+ERJ1fZQoaAZoCWgPQwg7xD9saWtvQJSGlFKUaBVNnQFoFkdAl7TyHIp6QnV9lChoBmgJaA9DCJOrWPymDWRAlIaUUpRoFU3oA2gWR0CXtUDtPYWddX2UKGgGaAloD0MI6PUn8TlhZ0CUhpRSlGgVTegDaBZHQJe1927nPmh1fZQoaAZoCWgPQwicbtkhfr1mQJSGlFKUaBVN6ANoFkdAl7pSZa3ZwnV9lChoBmgJaA9DCDBGJAqtb2hAlIaUUpRoFU3oA2gWR0CXu8re67NCdX2UKGgGaAloD0MIqb7zixJtUkCUhpRSlGgVS7VoFkdAl7wnPAwfyXV9lChoBmgJaA9DCIFZoUg3JXBAlIaUUpRoFU38AmgWR0CXvYmFJxvOdX2UKGgGaAloD0MIhGOWPUnscECUhpRSlGgVTQ4BaBZHQJe9w1O0svt1fZQoaAZoCWgPQwjbpQ2Hpb5xQJSGlFKUaBVNvgFoFkdAl7/cNUfgaXV9lChoBmgJaA9DCKZCPBJvA3NAlIaUUpRoFU1gAWgWR0CXwH2G7BfsdX2UKGgGaAloD0MI5QzFHe/OaUCUhpRSlGgVTegDaBZHQJfBuYPXkHV1fZQoaAZoCWgPQwilSSno9uRFQJSGlFKUaBVLumgWR0CXwdsq8UVSdX2UKGgGaAloD0MI8z6O5sjMZkCUhpRSlGgVTegDaBZHQJfCQPbwjMV1fZQoaAZoCWgPQwhGmngHeEpOQJSGlFKUaBVLpWgWR0CXwl2uPmxMdX2UKGgGaAloD0MINsmP+BWHT0CUhpRSlGgVS7VoFkdAl8M7zf779HV9lChoBmgJaA9DCJHUQslkuGxAlIaUUpRoFU1bA2gWR0CXw0Zv1lGxdX2UKGgGaAloD0MIxM9/D165TUCUhpRSlGgVS51oFkdAl8O+HzpX63V9lChoBmgJaA9DCHnnUIaqBlFAlIaUUpRoFUuhaBZHQJfHiQA+6iF1fZQoaAZoCWgPQwi7nX3lwRZhQJSGlFKUaBVN6ANoFkdAl8f4hQm/nHV9lChoBmgJaA9DCLb2PlUFAGNAlIaUUpRoFU3oA2gWR0CXyIyGSIP9dX2UKGgGaAloD0MI/u4dNSagUkCUhpRSlGgVS81oFkdAl8ndg0CRwXV9lChoBmgJaA9DCITTghd9uU5AlIaUUpRoFUu1aBZHQJfKFWjoIOZ1fZQoaAZoCWgPQwiGqS11EMxvQJSGlFKUaBVN3QJoFkdAl89HVoYek3V9lChoBmgJaA9DCCOkbmdfj0hAlIaUUpRoFUueaBZHQJfPRPCVKPJ1fZQoaAZoCWgPQwifBaG8jwsjQJSGlFKUaBVLyGgWR0CX0xU+cH4XdX2UKGgGaAloD0MIpU5AE2EHcECUhpRSlGgVTTACaBZHQJfXvlXA/LV1fZQoaAZoCWgPQwgrwk1GlYtRQJSGlFKUaBVLnWgWR0CX2zEZzgdfdX2UKGgGaAloD0MIlfHvM+5KcECUhpRSlGgVTewBaBZHQJfffjo6jnF1fZQoaAZoCWgPQwiPG3433VplQJSGlFKUaBVN6ANoFkdAl+As98qnWXV9lChoBmgJaA9DCLN8XYZ/5GRAlIaUUpRoFU3oA2gWR0CX4K2uxKQJdX2UKGgGaAloD0MITWa8rfRyQ0CUhpRSlGgVS8FoFkdAl+GK9bor4HV9lChoBmgJaA9DCPq4NlQM/mVAlIaUUpRoFU3oA2gWR0CX4ZhM8HObdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 155, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ee11d14ca1ba9187cf0841aae2c411997cfb3c444089094eec1fe82db2e77b6
3
+ size 147126
ppo-LunarLander-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v3/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcac6b4d160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcac6b4d1f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcac6b4d280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcac6b4d310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fcac6b4d3a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fcac6b4d430>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcac6b4d4c0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fcac6b4d550>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcac6b4d5e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcac6b4d670>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcac6b4d700>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fcac6b485d0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670287004581821552,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJp9BrzD/DE9zghHvYrYXL56fsG82MpxvQAAAAAAAAAA5i8fvVyzJbppmIM7cna6NmWirjluD5q6AACAPwAAgD+aC++8SBuNutmeNDqvJpM1iyVHO1zkiDQAAIA/AACAP5pNR724xs25lolXu/ccfrZYwYs6rad7OgAAgD8AAIA/uqIfvlrVYj4b6dQ8SqixvvLc4bzDm2q9AAAAAAAAAAAzkJ+99gRlut5YBLgWLwqzpj+sOtORGzcAAIA/AACAPzM1aL3DmXq6Dx6EMMHA8jCg2ti5sn5JMgAAgD8AAIA/ZqvGva4dh7qWeTK4IiAls09yw7rlt083AACAPwAAgD9m4B08w/06umVC5DgUd3c2LCdpuz5JBrgAAIA/AACAP40tk71ht7095VXyPHYvY77MJNa8rzLAPQAAAAAAAAAAWuDLvXukgLqjb90399teMxxgLzsru/22AACAPwAAgD+aGx69KeAVuojQWze81L4xe2GWucIhf7YAAIA/AACAP5oUCj1SOIU4U7Ohu3UfNDj1hv+73ymcNwAAgD8AAIA/5uSFPamMGz+OXPm9+kuuvsE68rwBEI69AAAAAAAAAABNeye9iJKuPmr/ID5MB4e+a1AaPXjT8z0AAAAAAAAAALMfLb3DiRK6gv1LOBvSgjMd01Y6RgtptwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIB2LZzCEJY0CUhpRSlIwBbJRN6AOMAXSUR0CWVLBI4EOidX2UKGgGaAloD0MIqP+s+fFoaECUhpRSlGgVTegDaBZHQJZVTvkRzzV1fZQoaAZoCWgPQwjsE0Axso5oQJSGlFKUaBVN6ANoFkdAllkkwBYFJXV9lChoBmgJaA9DCMu5FFeV+0NAlIaUUpRoFUvIaBZHQJZgMcyWRih1fZQoaAZoCWgPQwhTXcDLDBdmQJSGlFKUaBVN6ANoFkdAlmFhVhkRSXV9lChoBmgJaA9DCKG6ufjbMkRAlIaUUpRoFUu5aBZHQJZjVpmEoOR1fZQoaAZoCWgPQwiz7h8L0cZmQJSGlFKUaBVN6ANoFkdAlmP5SNwR5HV9lChoBmgJaA9DCIqT+x2KpGZAlIaUUpRoFU3oA2gWR0CWZgo4dZJTdX2UKGgGaAloD0MIO1J955dBYUCUhpRSlGgVTegDaBZHQJZoYhIOH311fZQoaAZoCWgPQwgQdLSqJZ9kQJSGlFKUaBVN6ANoFkdAlmiQWvbGm3V9lChoBmgJaA9DCEvMs5JWF2NAlIaUUpRoFU3oA2gWR0CWaWhM8HObdX2UKGgGaAloD0MI6L8Hr93mZUCUhpRSlGgVTegDaBZHQJZqNHDrJKd1fZQoaAZoCWgPQwg5KGGm7YZjQJSGlFKUaBVN6ANoFkdAlsz3Snccl3V9lChoBmgJaA9DCHtNDwpKNmZAlIaUUpRoFU3oA2gWR0CW0I0A93bFdX2UKGgGaAloD0MINlfNc0T3cECUhpRSlGgVTQsDaBZHQJbWJFWn0kJ1fZQoaAZoCWgPQwhfe2ZJAOBpQJSGlFKUaBVN6ANoFkdAltYljAi3X3V9lChoBmgJaA9DCKwcWmS7YWRAlIaUUpRoFU3oA2gWR0CW2MFrEcbSdX2UKGgGaAloD0MI9P3UeGlScECUhpRSlGgVTTwCaBZHQJbf7cGkep51fZQoaAZoCWgPQwh4R8Zqc1BjQJSGlFKUaBVN6ANoFkdAluIl3yI553V9lChoBmgJaA9DCGRYxRuZHVBAlIaUUpRoFUuCaBZHQJbmMmkWRA91fZQoaAZoCWgPQwgmAWpqWaNjQJSGlFKUaBVN6ANoFkdAluehnanJk3V9lChoBmgJaA9DCNbgfVWuFWVAlIaUUpRoFU3oA2gWR0CW8kE/0NBodX2UKGgGaAloD0MIqG3DKIhnaECUhpRSlGgVTegDaBZHQJbzVKcurZJ1fZQoaAZoCWgPQwhszOuIQxJkQJSGlFKUaBVN6ANoFkdAlvWs0Ltu1nV9lChoBmgJaA9DCGzqPCr+lmNAlIaUUpRoFU3oA2gWR0CW96sySFGodX2UKGgGaAloD0MIVMcqpWciZECUhpRSlGgVTegDaBZHQJb54HVwxWV1fZQoaAZoCWgPQwjeWbvtQtpmQJSGlFKUaBVN6ANoFkdAlvoN/BnBcnV9lChoBmgJaA9DCEpATMIFMmZAlIaUUpRoFU3oA2gWR0CW+tHNHH3ldX2UKGgGaAloD0MIdhcoKTCSYUCUhpRSlGgVTegDaBZHQJb7iraM72d1fZQoaAZoCWgPQwhZ/Kaw0kxkQJSGlFKUaBVN6ANoFkdAlvxU2UB4lnV9lChoBmgJaA9DCH2zzY3pXUlAlIaUUpRoFUvWaBZHQJb8zGaQV9F1fZQoaAZoCWgPQwjXogVo2y1iQJSGlFKUaBVN6ANoFkdAlv+fOD8Lr3V9lChoBmgJaA9DCANC6+HLR1NAlIaUUpRoFUuwaBZHQJcAzTTfBN51fZQoaAZoCWgPQwizQSYZuSNuQJSGlFKUaBVNlgNoFkdAlwEP1lGwzXV9lChoBmgJaA9DCHHLR1LS7GVAlIaUUpRoFU3oA2gWR0CXBEm3fAKwdX2UKGgGaAloD0MIbSBdbFrqZECUhpRSlGgVTegDaBZHQJcGmyxA0Kt1fZQoaAZoCWgPQwjkolpEVIxyQJSGlFKUaBVNKgJoFkdAlw3Isqaw2XV9lChoBmgJaA9DCN9t3jgpqGNAlIaUUpRoFU3oA2gWR0CXEIqlxffGdX2UKGgGaAloD0MIMqt3uF01cUCUhpRSlGgVTbwBaBZHQJcQqNo8IRh1fZQoaAZoCWgPQwgvpS4ZRyJnQJSGlFKUaBVN6ANoFkdAlxRy704BFXV9lChoBmgJaA9DCAE1tWyty2RAlIaUUpRoFU3oA2gWR0CXFcEMspXqdX2UKGgGaAloD0MINuUK7zIPcECUhpRSlGgVTeEBaBZHQJcXJQ/HHWB1fZQoaAZoCWgPQwg5fqg04q5hQJSGlFKUaBVN6ANoFkdAlx8EDEFW4nV9lChoBmgJaA9DCPOPvklTKmZAlIaUUpRoFU3oA2gWR0CXJIKHwgDBdX2UKGgGaAloD0MIzuDvFzMrZECUhpRSlGgVTegDaBZHQJcm6K2rn1Z1fZQoaAZoCWgPQwhtPNhit+lmQJSGlFKUaBVN6ANoFkdAlyf3+dbxE3V9lChoBmgJaA9DCPPMy2H3amlAlIaUUpRoFU3oA2gWR0CXKNFJxvNvdX2UKGgGaAloD0MIY9LfS2EpaUCUhpRSlGgVTegDaBZHQJcpuuq3mV91fZQoaAZoCWgPQwhHAaJgRr1iQJSGlFKUaBVN6ANoFkdAl5Cf7rLQonV9lChoBmgJaA9DCL3hPnJrUkVAlIaUUpRoFUutaBZHQJeRiBDohZB1fZQoaAZoCWgPQwgoSddMvh9lQJSGlFKUaBVN6ANoFkdAl5IJ9uxbCHV9lChoBmgJaA9DCJRqn45HmmRAlIaUUpRoFU3oA2gWR0CXlU8Q7LdOdX2UKGgGaAloD0MIv7fpz35JZ0CUhpRSlGgVTegDaBZHQJeXfhQ3xWl1fZQoaAZoCWgPQwhENpAuNsBSQJSGlFKUaBVLomgWR0CXmAPPcBU8dX2UKGgGaAloD0MIkwGgihsvbkCUhpRSlGgVTc4CaBZHQJeYfz7MxGl1fZQoaAZoCWgPQwhsXP+uT/hiQJSGlFKUaBVN6ANoFkdAl50s/D+BH3V9lChoBmgJaA9DCFMgs7PohURAlIaUUpRoFUu4aBZHQJee6Btk4FR1fZQoaAZoCWgPQwiw5CoWP1ZjQJSGlFKUaBVN6ANoFkdAl59lxwQ18HV9lChoBmgJaA9DCMssQrGV0mdAlIaUUpRoFU3oA2gWR0CXn35WzWwvdX2UKGgGaAloD0MIx4Ds9W5scECUhpRSlGgVTfABaBZHQJeg7Ip6QeV1fZQoaAZoCWgPQwghkiHH1glvQJSGlFKUaBVNmANoFkdAl6G/Ho5ggHV9lChoBmgJaA9DCFLWbyYmmGNAlIaUUpRoFU3oA2gWR0CXoosSCe3AdX2UKGgGaAloD0MIA15m2KizYkCUhpRSlGgVTegDaBZHQJesoVKwpvx1fZQoaAZoCWgPQwhavcPtUPBxQJSGlFKUaBVNPQJoFkdAl6yifthNNHV9lChoBmgJaA9DCLg+rDcq8HJAlIaUUpRoFU1tAWgWR0CXscm+TNdJdX2UKGgGaAloD0MIwakPJG9QaECUhpRSlGgVTegDaBZHQJeyEG/vfCR1fZQoaAZoCWgPQwgg1bDfk1dyQJSGlFKUaBVNlQFoFkdAl7Kuuieum3V9lChoBmgJaA9DCOXQItv5GjpAlIaUUpRoFUuqaBZHQJe00EX+ERJ1fZQoaAZoCWgPQwg7xD9saWtvQJSGlFKUaBVNnQFoFkdAl7TyHIp6QnV9lChoBmgJaA9DCJOrWPymDWRAlIaUUpRoFU3oA2gWR0CXtUDtPYWddX2UKGgGaAloD0MI6PUn8TlhZ0CUhpRSlGgVTegDaBZHQJe1927nPmh1fZQoaAZoCWgPQwicbtkhfr1mQJSGlFKUaBVN6ANoFkdAl7pSZa3ZwnV9lChoBmgJaA9DCDBGJAqtb2hAlIaUUpRoFU3oA2gWR0CXu8re67NCdX2UKGgGaAloD0MIqb7zixJtUkCUhpRSlGgVS7VoFkdAl7wnPAwfyXV9lChoBmgJaA9DCIFZoUg3JXBAlIaUUpRoFU38AmgWR0CXvYmFJxvOdX2UKGgGaAloD0MIhGOWPUnscECUhpRSlGgVTQ4BaBZHQJe9w1O0svt1fZQoaAZoCWgPQwjbpQ2Hpb5xQJSGlFKUaBVNvgFoFkdAl7/cNUfgaXV9lChoBmgJaA9DCKZCPBJvA3NAlIaUUpRoFU1gAWgWR0CXwH2G7BfsdX2UKGgGaAloD0MI5QzFHe/OaUCUhpRSlGgVTegDaBZHQJfBuYPXkHV1fZQoaAZoCWgPQwilSSno9uRFQJSGlFKUaBVLumgWR0CXwdsq8UVSdX2UKGgGaAloD0MI8z6O5sjMZkCUhpRSlGgVTegDaBZHQJfCQPbwjMV1fZQoaAZoCWgPQwhGmngHeEpOQJSGlFKUaBVLpWgWR0CXwl2uPmxMdX2UKGgGaAloD0MINsmP+BWHT0CUhpRSlGgVS7VoFkdAl8M7zf779HV9lChoBmgJaA9DCJHUQslkuGxAlIaUUpRoFU1bA2gWR0CXw0Zv1lGxdX2UKGgGaAloD0MIxM9/D165TUCUhpRSlGgVS51oFkdAl8O+HzpX63V9lChoBmgJaA9DCHnnUIaqBlFAlIaUUpRoFUuhaBZHQJfHiQA+6iF1fZQoaAZoCWgPQwi7nX3lwRZhQJSGlFKUaBVN6ANoFkdAl8f4hQm/nHV9lChoBmgJaA9DCLb2PlUFAGNAlIaUUpRoFU3oA2gWR0CXyIyGSIP9dX2UKGgGaAloD0MI/u4dNSagUkCUhpRSlGgVS81oFkdAl8ndg0CRwXV9lChoBmgJaA9DCITTghd9uU5AlIaUUpRoFUu1aBZHQJfKFWjoIOZ1fZQoaAZoCWgPQwiGqS11EMxvQJSGlFKUaBVN3QJoFkdAl89HVoYek3V9lChoBmgJaA9DCCOkbmdfj0hAlIaUUpRoFUueaBZHQJfPRPCVKPJ1fZQoaAZoCWgPQwifBaG8jwsjQJSGlFKUaBVLyGgWR0CX0xU+cH4XdX2UKGgGaAloD0MIpU5AE2EHcECUhpRSlGgVTTACaBZHQJfXvlXA/LV1fZQoaAZoCWgPQwgrwk1GlYtRQJSGlFKUaBVLnWgWR0CX2zEZzgdfdX2UKGgGaAloD0MIlfHvM+5KcECUhpRSlGgVTewBaBZHQJfffjo6jnF1fZQoaAZoCWgPQwiPG3433VplQJSGlFKUaBVN6ANoFkdAl+As98qnWXV9lChoBmgJaA9DCLN8XYZ/5GRAlIaUUpRoFU3oA2gWR0CX4K2uxKQJdX2UKGgGaAloD0MITWa8rfRyQ0CUhpRSlGgVS8FoFkdAl+GK9bor4HV9lChoBmgJaA9DCPq4NlQM/mVAlIaUUpRoFU3oA2gWR0CX4ZhM8HObdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 155,
79
+ "n_steps": 2048,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 32,
86
+ "n_epochs": 5,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c2c8c49c9df6668cdbccca4be4b842637f419156d0facb0aabf4c79fe31abe3
3
+ size 87865
ppo-LunarLander-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26f7fe967691d792b2aea4f715ef41d2108f0a8259f2b18a3142c6c22eb773ce
3
+ size 43201
ppo-LunarLander-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (210 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 261.5491156014805, "std_reward": 21.169735650679716, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-06T01:05:18.787483"}