Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +127 -0
- config.json +25 -0
- config_sentence_transformers.json +9 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +338 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sentence-transformers
|
3 |
+
pipeline_tag: sentence-similarity
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- feature-extraction
|
7 |
+
- sentence-similarity
|
8 |
+
- transformers
|
9 |
+
|
10 |
+
---
|
11 |
+
|
12 |
+
# danfeg/AraBERT_Finetuned-COMB-12481
|
13 |
+
|
14 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
15 |
+
|
16 |
+
<!--- Describe your model here -->
|
17 |
+
|
18 |
+
## Usage (Sentence-Transformers)
|
19 |
+
|
20 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
21 |
+
|
22 |
+
```
|
23 |
+
pip install -U sentence-transformers
|
24 |
+
```
|
25 |
+
|
26 |
+
Then you can use the model like this:
|
27 |
+
|
28 |
+
```python
|
29 |
+
from sentence_transformers import SentenceTransformer
|
30 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
31 |
+
|
32 |
+
model = SentenceTransformer('danfeg/AraBERT_Finetuned-COMB-12481')
|
33 |
+
embeddings = model.encode(sentences)
|
34 |
+
print(embeddings)
|
35 |
+
```
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
## Usage (HuggingFace Transformers)
|
40 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
41 |
+
|
42 |
+
```python
|
43 |
+
from transformers import AutoTokenizer, AutoModel
|
44 |
+
import torch
|
45 |
+
|
46 |
+
|
47 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
48 |
+
def mean_pooling(model_output, attention_mask):
|
49 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
50 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
51 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
52 |
+
|
53 |
+
|
54 |
+
# Sentences we want sentence embeddings for
|
55 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
56 |
+
|
57 |
+
# Load model from HuggingFace Hub
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained('danfeg/AraBERT_Finetuned-COMB-12481')
|
59 |
+
model = AutoModel.from_pretrained('danfeg/AraBERT_Finetuned-COMB-12481')
|
60 |
+
|
61 |
+
# Tokenize sentences
|
62 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
63 |
+
|
64 |
+
# Compute token embeddings
|
65 |
+
with torch.no_grad():
|
66 |
+
model_output = model(**encoded_input)
|
67 |
+
|
68 |
+
# Perform pooling. In this case, mean pooling.
|
69 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
70 |
+
|
71 |
+
print("Sentence embeddings:")
|
72 |
+
print(sentence_embeddings)
|
73 |
+
```
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
## Evaluation Results
|
78 |
+
|
79 |
+
<!--- Describe how your model was evaluated -->
|
80 |
+
|
81 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=danfeg/AraBERT_Finetuned-COMB-12481)
|
82 |
+
|
83 |
+
|
84 |
+
## Training
|
85 |
+
The model was trained with the parameters:
|
86 |
+
|
87 |
+
**DataLoader**:
|
88 |
+
|
89 |
+
`torch.utils.data.dataloader.DataLoader` of length 391 with parameters:
|
90 |
+
```
|
91 |
+
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
92 |
+
```
|
93 |
+
|
94 |
+
**Loss**:
|
95 |
+
|
96 |
+
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
97 |
+
|
98 |
+
Parameters of the fit()-Method:
|
99 |
+
```
|
100 |
+
{
|
101 |
+
"epochs": 3,
|
102 |
+
"evaluation_steps": 0,
|
103 |
+
"evaluator": "NoneType",
|
104 |
+
"max_grad_norm": 1,
|
105 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
106 |
+
"optimizer_params": {
|
107 |
+
"lr": 2e-05
|
108 |
+
},
|
109 |
+
"scheduler": "WarmupLinear",
|
110 |
+
"steps_per_epoch": null,
|
111 |
+
"warmup_steps": 118,
|
112 |
+
"weight_decay": 0.01
|
113 |
+
}
|
114 |
+
```
|
115 |
+
|
116 |
+
|
117 |
+
## Full Model Architecture
|
118 |
+
```
|
119 |
+
SentenceTransformer(
|
120 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
121 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
122 |
+
)
|
123 |
+
```
|
124 |
+
|
125 |
+
## Citing & Authors
|
126 |
+
|
127 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "aubmindlab/bert-large-arabertv2",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 1024,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 4096,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 16,
|
17 |
+
"num_hidden_layers": 24,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.36.0",
|
22 |
+
"type_vocab_size": 2,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 64000
|
25 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.5.1",
|
4 |
+
"transformers": "4.36.0",
|
5 |
+
"pytorch": "2.1.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51011e4dc1ae49d27f98dd57d418595293716fdee8efab6258466854379221c0
|
3 |
+
size 1477738408
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "+ا",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": true,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": true,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "+ك",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": true,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": true,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "ب+",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": true,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": true,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "+هم",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": true,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "+ات",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": true,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": true,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"5": {
|
44 |
+
"content": "+ي",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": true,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": true,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"6": {
|
52 |
+
"content": "ل+",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": true,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": true,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"7": {
|
60 |
+
"content": "+هما",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": true,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": true,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"8": {
|
68 |
+
"content": "+نا",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": true,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": true,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"9": {
|
76 |
+
"content": "+ن",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": true,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": true,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"10": {
|
84 |
+
"content": "+ها",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": true,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": true,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"11": {
|
92 |
+
"content": "+كما",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": true,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": true,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"12": {
|
100 |
+
"content": "+ة",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": true,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": true,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"13": {
|
108 |
+
"content": "ف+",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": true,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": true,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"14": {
|
116 |
+
"content": "+كم",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": true,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": true,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"15": {
|
124 |
+
"content": "+كن",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": true,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": true,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"16": {
|
132 |
+
"content": "+ت",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": true,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": true,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"17": {
|
140 |
+
"content": "[بريد]",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": true,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": true,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"18": {
|
148 |
+
"content": "[مستخدم]",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": true,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": true,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"19": {
|
156 |
+
"content": "لل+",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": true,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": true,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"20": {
|
164 |
+
"content": "ال+",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": true,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": true,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"21": {
|
172 |
+
"content": "[رابط]",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": true,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": true,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"22": {
|
180 |
+
"content": "س+",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": true,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": true,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"23": {
|
188 |
+
"content": "+ان",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": true,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": true,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"24": {
|
196 |
+
"content": "+وا",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": true,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": true,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"25": {
|
204 |
+
"content": "+ه",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": true,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": true,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"26": {
|
212 |
+
"content": "+ون",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": true,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": true,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"27": {
|
220 |
+
"content": "+هن",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": true,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": true,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"28": {
|
228 |
+
"content": "+ين",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": true,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": true,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"29": {
|
236 |
+
"content": "��+",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": true,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": true,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"30": {
|
244 |
+
"content": "ك+",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": true,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": true,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"31": {
|
252 |
+
"content": "[PAD]",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"32": {
|
260 |
+
"content": "[UNK]",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"33": {
|
268 |
+
"content": "[CLS]",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"34": {
|
276 |
+
"content": "[SEP]",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"35": {
|
284 |
+
"content": "[MASK]",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
}
|
291 |
+
},
|
292 |
+
"clean_up_tokenization_spaces": true,
|
293 |
+
"cls_token": "[CLS]",
|
294 |
+
"do_basic_tokenize": true,
|
295 |
+
"do_lower_case": false,
|
296 |
+
"mask_token": "[MASK]",
|
297 |
+
"max_len": 512,
|
298 |
+
"model_max_length": 512,
|
299 |
+
"never_split": [
|
300 |
+
"+ك",
|
301 |
+
"+كما",
|
302 |
+
"ك+",
|
303 |
+
"+وا",
|
304 |
+
"+ين",
|
305 |
+
"و+",
|
306 |
+
"+كن",
|
307 |
+
"+ان",
|
308 |
+
"+هم",
|
309 |
+
"+ة",
|
310 |
+
"[بريد]",
|
311 |
+
"لل+",
|
312 |
+
"+ي",
|
313 |
+
"+ت",
|
314 |
+
"+ن",
|
315 |
+
"س+",
|
316 |
+
"ل+",
|
317 |
+
"[مستخدم]",
|
318 |
+
"+كم",
|
319 |
+
"+ا",
|
320 |
+
"ب+",
|
321 |
+
"ف+",
|
322 |
+
"+نا",
|
323 |
+
"+ها",
|
324 |
+
"+ون",
|
325 |
+
"+هما",
|
326 |
+
"ال+",
|
327 |
+
"+ه",
|
328 |
+
"+هن",
|
329 |
+
"+ات",
|
330 |
+
"[رابط]"
|
331 |
+
],
|
332 |
+
"pad_token": "[PAD]",
|
333 |
+
"sep_token": "[SEP]",
|
334 |
+
"strip_accents": null,
|
335 |
+
"tokenize_chinese_chars": true,
|
336 |
+
"tokenizer_class": "BertTokenizer",
|
337 |
+
"unk_token": "[UNK]"
|
338 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|