autoencoders / autoencoder.py
Dan Friedman
Add autoencoder.py
f9cfa84
import math
import numpy as np
import torch
from torch import nn
from torch.distributions import Independent, Normal, MultivariateNormal
import torch.nn.functional as F
from transformers import AutoModel, AutoModelForCausalLM
from tqdm import tqdm
from tqdm.notebook import tqdm as tqdm_notebook
class Res(nn.Module):
def __init__(self, H):
super().__init__()
self.u1 = nn.Linear(H, H)
self.u2 = nn.Linear(H, H)
self.v1 = nn.Linear(H, H)
self.v2 = nn.Linear(H, H)
self.w = nn.Linear(H, H)
def forward(self, x):
x = self.w(x)
x = x + torch.relu(self.v1(torch.relu(self.u1(x))))
return x + torch.relu(self.v2(torch.relu(self.u2(x))))
class MLP(nn.Module):
def __init__(self, H, out=None):
super().__init__()
out = out or H
self.mlp = nn.Sequential(
nn.Linear(H, H),
nn.ReLU(),
nn.Linear(H, H),
nn.ReLU(),
nn.Linear(H, out),
)
def forward(self, x):
return self.mlp(x)
class Encoder(nn.Module):
def __init__(self, tokenizer, model_name_or_path="roberta-base", **kwargs):
super().__init__()
self.encoder = AutoModel.from_pretrained(model_name_or_path)
self.encoder.resize_token_embeddings(len(tokenizer))
self.dim = self.encoder.config.hidden_size
@property
def device(self):
return self.encoder.device
def forward(self, **inputs):
model_inputs = {
k: inputs[k].to(self.device)
for k in ("input_ids", "attention_mask")
}
if inputs.get("token_type_ids", None) is not None:
model_inputs["token_type_ids"] = inputs["token_type_ids"].to(
self.device
)
out = self.encoder(**model_inputs)
emb = out.last_hidden_state[:, 0]
return emb
class PrefixDecoder(nn.Module):
def __init__(
self,
tokenizer,
model_name_or_path="gpt2",
prefix_length=1,
ffn="res",
**kwargs,
):
super().__init__()
self.decoder = AutoModelForCausalLM.from_pretrained(model_name_or_path)
self.hidden_dim = D = self.decoder.config.n_embd
self.num_layers = L = self.decoder.config.n_layer
self.num_heads = H = self.decoder.config.n_head
self.prefix_length = K = prefix_length
self.lin1 = nn.Linear(D, D * 2)
self.z_size = D * L * K * 2
if ffn == "res":
self.mlp = nn.Sequential(Res(D), nn.Linear(D, self.z_size))
else:
self.mlp = MLP(D, self.z_size)
def get_prefix(self, z):
B = z.shape[0]
D, L, H, K = (
self.hidden_dim,
self.num_layers,
self.num_heads,
self.prefix_length,
)
z_up = self.mlp(z).reshape(B, H, K, D // H, L, 2)
keys, vals = (t.squeeze(-1) for t in z_up.chunk(2, dim=-1))
layers = tuple(
[
(k.squeeze(-1), v.squeeze(-1))
for k, v in zip(keys.chunk(L, -1), vals.chunk(L, -1))
]
)
return layers
def forward(self, z, **inputs):
B = z.shape[0]
D, L, H, K = (
self.hidden_dim,
self.num_layers,
self.num_heads,
self.prefix_length,
)
z_up = self.mlp(z).reshape(B, H, K, D // H, L, 2)
keys, vals = (t.squeeze(-1) for t in z_up.chunk(2, dim=-1))
layers = tuple(
[
(k.squeeze(-1), v.squeeze(-1))
for k, v in zip(keys.chunk(L, -1), vals.chunk(L, -1))
]
)
input_ids = inputs["input_ids"].to(z.device)
attention_mask = inputs["attention_mask"].to(z.device)
attention_mask = torch.cat(
[torch.ones(B, K, dtype=bool, device=z.device), attention_mask],
1,
)
out = self.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=layers,
)
return out
def get_inputs(
inputs, prefix, keys=["input_ids", "attention_mask", "token_type_ids"]
):
return {k: inputs.get(f"{prefix}{k}", None) for k in keys}
class VAE(nn.Module):
def __init__(self, encoder, decoder, beta=1.0, do_sample=True, **kwargs):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.beta = beta
D = decoder.hidden_dim
self.lin = nn.Linear(D, D * 2)
self.do_sample = do_sample
@property
def device(self):
return self.encoder.device
def get_z(self, sample=True, **inputs):
enc = self.encoder(**get_inputs(inputs, "enc_"))
B, D = enc.shape
mu, logvar = (
t.squeeze(-1) for t in self.lin(enc).view(B, D, 2).chunk(2, -1)
)
qz = Normal(mu, logvar.exp())
pz = Normal(torch.zeros_like(mu[0]), torch.ones_like(mu[0]))
kl = torch.distributions.kl_divergence(qz, pz).sum(-1)
if sample:
z = qz.rsample()
else:
z = mu
return z, kl
def forward(self, **inputs):
z, kl = self.get_z(sample=self.do_sample, **inputs)
out = self.decoder(z, **get_inputs(inputs, "dec_"))
out["kl"] = kl
return out
class AAE(nn.Module):
def __init__(self, encoder, decoder, _lambda=1.0, word_drop=None, **kwargs):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self._lambda = _lambda
dim = decoder.hidden_dim
self.D = nn.Sequential(
nn.Linear(dim, dim), nn.ReLU(), nn.Linear(dim, 1), nn.Sigmoid()
)
self.word_drop = word_drop
@property
def device(self):
return self.encoder.device
def get_z(self, **inputs):
if self.word_drop is not None:
m = inputs["enc_attention_mask"]
b = torch.rand_like(m.float()) > self.word_drop
inputs["enc_attention_mask"] = m & b
return self.encoder(**get_inputs(inputs, "enc_")), None
def loss_adv(self, z):
# https://github.com/shentianxiao/text-autoencoders
zn = torch.randn_like(z)
zeros = torch.zeros(len(z), 1, device=z.device)
ones = torch.ones(len(z), 1, device=z.device)
loss_d = F.binary_cross_entropy(
self.D(z.detach()), zeros, reduction="none"
) + F.binary_cross_entropy(self.D(zn), ones, reduction="none")
adv = F.binary_cross_entropy(self.D(z), ones, reduction="none")
return loss_d, adv
def forward(self, **inputs):
z, _ = self.get_z(**inputs)
out = self.decoder(z, **get_inputs(inputs, "dec_"))
b, n, _ = out["logits"].shape
log_probs = out["logits"].log_softmax(-1)
log_probs = torch.gather(
log_probs[:, :-1],
-1,
inputs["dec_input_ids"][:, 1:].unsqueeze(-1),
).squeeze(-1)
log_probs = log_probs.masked_fill(
~inputs["dec_attention_mask"][:, 1:], 0
)
out["l_rec"] = -log_probs.sum(-1)
out["loss_d"], out["adv"] = self.loss_adv(z)
return out
class AE(nn.Module):
def __init__(self, encoder, decoder, **kwargs):
super().__init__()
self.encoder = encoder
self.decoder = decoder
dim = decoder.hidden_dim
self.D = nn.Sequential(
nn.Linear(dim, dim), nn.ReLU(), nn.Linear(dim, 1), nn.Sigmoid()
)
@property
def device(self):
return self.encoder.device
def get_z(self, **inputs):
return self.encoder(**get_inputs(inputs, "enc_")), None
def step(self, **inputs):
z, _ = self.get_z(**inputs)
out = self.decoder(z, **get_inputs(inputs, "dec_"))
b, n, _ = out["logits"].shape
log_probs = out["logits"].log_softmax(-1)
log_probs = torch.gather(
log_probs[:, :-1],
-1,
inputs["dec_input_ids"][:, 1:].unsqueeze(-1),
).squeeze(-1)
log_probs = log_probs.masked_fill(
~inputs["dec_attention_mask"][:, 1:], 0
)
out["loss_r"] = -log_probs.sum(-1)
return z, out
def forward(self, **inputs):
z, out = self.step(**inputs)
out["loss_c"] = torch.zeros_like(out["loss_r"])
return out
class CDAE(nn.Module):
def __init__(
self, encoder, decoder, _lambda=1.0, word_drop=None, tau=1.0, **kwargs
):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self._lambda = _lambda
dim = decoder.hidden_dim
self.D = nn.Sequential(
nn.Linear(dim, dim), nn.ReLU(), nn.Linear(dim, 1), nn.Sigmoid()
)
self.word_drop = word_drop
self.tau = tau
@property
def device(self):
return self.encoder.device
def do_mask(self, **inputs):
m = inputs["enc_attention_mask"]
b = torch.rand_like(m.float()) > self.word_drop
inputs["enc_attention_mask"] = m & b
B, N = inputs["dec_attention_mask"].shape
_, M = m.shape
m2 = inputs["dec_attention_mask"]
if N <= M:
b2 = b[:, :N]
else:
b_ = torch.rand((B, N - M), device=b.device) > self.word_drop
b2 = torch.cat([b, b_], -1)
inputs["dec_attention_mask"] = m2 & b2
def get_z(self, **inputs):
return self.encoder(**get_inputs(inputs, "enc_")), None
def step(self, **inputs):
z, _ = self.get_z(**inputs)
out = self.decoder(z, **get_inputs(inputs, "dec_"))
b, n, _ = out["logits"].shape
log_probs = out["logits"].log_softmax(-1)
log_probs = torch.gather(
log_probs[:, :-1],
-1,
inputs["dec_input_ids"][:, 1:].unsqueeze(-1),
).squeeze(-1)
log_probs = log_probs.masked_fill(
~inputs["dec_attention_mask"][:, 1:], 0
)
out["loss_r"] = -log_probs.sum(-1)
return z, out
def loss_c(self, z, z2):
scores = -(torch.cdist(z, z2) ** 2)
log_probs = (scores / self.tau).log_softmax(-1)
loss = -torch.diagonal(log_probs)
return loss
def forward(self, **inputs):
z, out = self.step(**inputs)
self.do_mask(**inputs)
z_, out_ = self.step(**inputs)
out["loss_r"] = out["loss_r"] + out_["loss_r"]
out["loss_c"] = self.loss_c(z, z_)
return out
def run_aae_epoch(
model,
batches,
opt,
optD,
num_samples=1,
lambda_adv=1.0,
desc="",
notebook=True,
):
losses = {k: [] for k in ("l_rec", "adv", "loss_d")}
t = (
tqdm_notebook(batches, desc=desc)
if notebook
else tqdm(batches, desc=desc)
)
for batch in t:
model_inputs = {
k: v.to(model.device)
for k, v in batch.items()
if type(v) == torch.Tensor
}
out = model(**model_inputs)
loss = (out["l_rec"] + lambda_adv * out["adv"]).sum()
opt.zero_grad()
loss.backward()
opt.step()
loss_d = out["loss_d"].sum()
optD.zero_grad()
loss_d.backward()
optD.step()
d = {}
for k in ("l_rec", "adv", "loss_d"):
d[k] = out[k].mean().item()
losses[k].append(out[k].detach().cpu().numpy())
t.set_postfix(d)
return {k: np.concatenate(v, 0) for k, v in losses.items()}
class GAE(nn.Module):
def __init__(self, encoder, decoder, tau=0.05, **kwargs):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.tau = tau
@property
def device(self):
return self.encoder.device
def get_z(self, **inputs):
return self.encoder(**get_inputs(inputs, "enc_")), None
def loss_c(self, z, z2):
scores = F.normalize(z, dim=-1) @ F.normalize(z2, dim=-1).T
log_probs = (scores / self.tau).log_softmax(-1)
loss = -torch.diagonal(log_probs)
return loss
def forward(self, **inputs):
z, _ = self.get_z(**inputs)
out = self.decoder(z, **get_inputs(inputs, "dec_"))
b, n, _ = out["logits"].shape
log_probs = out["logits"].log_softmax(-1)
log_probs = torch.gather(
log_probs[:, :-1],
-1,
inputs["dec_input_ids"][:, 1:].unsqueeze(-1),
).squeeze(-1)
log_probs = log_probs.masked_fill(
~inputs["dec_attention_mask"][:, 1:], 0
)
out["loss_r"] = -log_probs.sum(-1)
out["loss_c"] = self.loss_c(z)
return out
class CAE(nn.Module):
def __init__(self, encoder, decoder, tau=0.05, **kwargs):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.tau = tau
@property
def device(self):
return self.encoder.device
def get_z(self, **inputs):
return self.encoder(**get_inputs(inputs, "enc_")), None
def loss_c(self, z, z2):
scores = F.normalize(z, dim=-1) @ F.normalize(z2, dim=-1).T
log_probs = (scores / self.tau).log_softmax(-1)
loss = -torch.diagonal(log_probs)
return loss
def forward(self, **inputs):
z, _ = self.get_z(**inputs)
with torch.no_grad():
z2, _ = self.get_z(**inputs)
out = self.decoder(z, **get_inputs(inputs, "dec_"))
b, n, _ = out["logits"].shape
log_probs = out["logits"].log_softmax(-1)
log_probs = torch.gather(
log_probs[:, :-1],
-1,
inputs["dec_input_ids"][:, 1:].unsqueeze(-1),
).squeeze(-1)
log_probs = log_probs.masked_fill(
~inputs["dec_attention_mask"][:, 1:], 0
)
out["loss_r"] = -log_probs.sum(-1)
out["loss_c"] = self.loss_c(z, z2)
return out
def run_cae_epoch(
model,
batches,
opt,
num_samples=1,
lambda_c=1.0,
desc="",
notebook=True,
):
losses = {k: [] for k in ("loss_r", "loss_c")}
t = (
tqdm_notebook(batches, desc=desc)
if notebook
else tqdm(batches, desc=desc)
)
model.train()
for batch in t:
model_inputs = {
k: v.to(model.device)
for k, v in batch.items()
if type(v) == torch.Tensor
}
out = model(**model_inputs)
loss = (out["loss_r"] + lambda_c * out["loss_c"]).sum()
opt.zero_grad()
loss.backward()
opt.step()
d = {}
for k in ("loss_r", "loss_c"):
d[k] = out[k].mean().item()
losses[k].append(out[k].detach().cpu().numpy())
t.set_postfix(d)
return {k: np.concatenate(v, 0) for k, v in losses.items()}
def batch_kl(l1, s1, l2=None, s2=None):
# 1/2[log |s1|/|s2| - d + tr[s2^{-1}s1] + (l2 - l1)^{\top} s2^{-1}(l2 - l1)]
return
class SubpopCondAE(nn.Module):
def __init__(
self,
encoder,
decoder,
num_labels,
sublabels=4,
tau=0.05,
disc_loss=True,
**kwargs,
):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.dim = dim = decoder.hidden_dim
self.locs = nn.Parameter(torch.randn(num_labels * sublabels, dim))
self.log_scales = nn.Parameter(torch.zeros(num_labels * sublabels, dim))
self.num_labels = num_labels
self.sublabels = sublabels
self.L = num_labels * sublabels
self.tau = tau
self.disc_loss = disc_loss
@property
def device(self):
return self.encoder.device
def get_z(self, **inputs):
return self.encoder(**get_inputs(inputs, "enc_")), None
def loss_c(self, z, **inputs):
scores = []
for i in range(self.L):
dist = Independent(
Normal(loc=self.locs[i], scale=self.log_scales[i].exp()), 1
)
scores.append(dist.log_prob(z))
B = z.shape[0]
sub_log_probs = torch.stack(scores, -1)
if self.disc_loss:
sub_log_probs = sub_log_probs.log_softmax(-1)
log_probs = sub_log_probs.view(
B, self.num_labels, self.num_sublabels
).logsumexp(-1)
loss = F.nll_loss(log_probs, inputs["label"], reduction="none")
acc = log_probs.argmax(-1) == inputs["label"]
return {
"loss_c": loss,
"log_probs": log_probs,
"sub_log_probs": sub_log_probs,
"acc": acc.float(),
}
def get_kl(self):
p = MultivariateNormal(
torch.zeros(self.dim, device=self.device),
torch.eye(self.dim, device=self.device),
)
kl = 0
for i in range(self.L):
q = MultivariateNormal(
self.locs[i], torch.diag(self.log_scales[i].exp())
)
kl += torch.distributions.kl_divergence(q, p)
return kl
def forward(self, **inputs):
z, _ = self.get_z(**inputs)
out = self.decoder(z, **get_inputs(inputs, "dec_"))
b, n, _ = out["logits"].shape
log_probs = out["logits"].log_softmax(-1)
log_probs = torch.gather(
log_probs[:, :-1],
-1,
inputs["dec_input_ids"][:, 1:].unsqueeze(-1),
).squeeze(-1)
log_probs = log_probs.masked_fill(
~inputs["dec_attention_mask"][:, 1:], 0
)
out["loss_r"] = -log_probs.sum(-1)
out_c = self.loss_c(z, **inputs)
for k, v in out_c.items():
out[k] = v
out["kl"] = self.get_kl().unsqueeze(0)
return out
def gaussian_prob_product(m1, s1, m2, s2, rho=1.0):
# s1, s2 diagonal
s1_inv = 1 / s1
s2_inv = 1 / s2
s_hat = 1 / (s1 + s2)
m_hat = s1_inv * s1 + s2_inv * s2
dim = m1.shape[-1]
return (
((2 * math.pi) ** ((1 - 2 * rho) * dim / 2))
* (rho ** (-dim / 2))
* torch.sqrt(s_hat.prod(-1))
* ((s1.prod(-1) * s2.prod(-1)) ** (-rho / 2))
* torch.exp(
-(1 / rho)
* (
m1 @ (s1_inv * m1).T
+ m2 @ (s2_inv * m2).T
- m_hat @ (s_hat * m_hat).T
)
)
)
class CondAE(nn.Module):
def __init__(
self,
encoder,
decoder,
num_labels,
logdet=False,
l2_reg=False,
disc_loss=True,
tau=0.05,
**kwargs,
):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.dim = dim = decoder.hidden_dim
self.locs = nn.Parameter(torch.randn(num_labels, dim))
self.log_scales = nn.Parameter(torch.zeros(num_labels, dim))
self.num_labels = num_labels
self.tau = tau
self.logdet = logdet
self.l2_reg = l2_reg
self.disc_loss = disc_loss
@property
def device(self):
return self.encoder.device
def get_z(self, **inputs):
return self.encoder(**get_inputs(inputs, "enc_")), None
def loss_c(self, z, **inputs):
scores = []
for i in range(self.num_labels):
dist = Independent(
Normal(loc=self.locs[i], scale=self.log_scales[i].exp()), 1
)
scores.append(dist.log_prob(z))
log_probs = torch.stack(scores, -1)
if self.disc_loss:
log_probs = log_probs.log_softmax(-1)
loss = F.nll_loss(log_probs, inputs["label"], reduction="none")
acc = log_probs.argmax(-1) == inputs["label"]
return {"loss_c": loss, "log_probs": log_probs, "acc": acc.float()}
def get_kl(self):
p = MultivariateNormal(
torch.zeros(self.dim, device=self.device),
torch.eye(self.dim, device=self.device),
)
kl = 0
for i in range(self.num_labels):
q = MultivariateNormal(
self.locs[i], torch.diag(self.log_scales[i].exp())
)
kl += torch.distributions.kl_divergence(q, p)
if self.logdet:
K = torch.exp(-torch.cdist(self.locs, self.locs) ** 2)
kl += torch.logdet(K)
elif self.l2_reg:
K = torch.exp(-torch.cdist(self.locs, self.locs) ** 2)
kl += torch.log(
torch.linalg.norm(K / K.shape[0], dim=(-2, -1)) ** 2
).sum()
return kl
def forward(self, **inputs):
z, _ = self.get_z(**inputs)
out = self.decoder(z, **get_inputs(inputs, "dec_"))
b, n, _ = out["logits"].shape
log_probs = out["logits"].log_softmax(-1)
log_probs = torch.gather(
log_probs[:, :-1],
-1,
inputs["dec_input_ids"][:, 1:].unsqueeze(-1),
).squeeze(-1)
log_probs = log_probs.masked_fill(
~inputs["dec_attention_mask"][:, 1:], 0
)
out["loss_r"] = -log_probs.sum(-1)
out_c = self.loss_c(z, **inputs)
for k, v in out_c.items():
out[k] = v
out["kl"] = self.get_kl().unsqueeze(0)
return out
class BasicCondAE(nn.Module):
def __init__(self, encoder, decoder, num_labels, tau=0.05, **kwargs):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.dim = dim = decoder.hidden_dim
self.linear = nn.Linear(dim, num_labels)
self.num_labels = num_labels
self.tau = tau
@property
def device(self):
return self.encoder.device
def get_z(self, **inputs):
return self.encoder(**get_inputs(inputs, "enc_")), None
def loss_c(self, z, **inputs):
log_probs = self.linear(z).log_softmax(-1)
loss = F.nll_loss(log_probs, inputs["label"], reduction="none")
acc = log_probs.argmax(-1) == inputs["label"]
return {"loss_c": loss, "log_probs": log_probs, "acc": acc.float()}
def forward(self, **inputs):
z, _ = self.get_z(**inputs)
out = self.decoder(z, **get_inputs(inputs, "dec_"))
b, n, _ = out["logits"].shape
log_probs = out["logits"].log_softmax(-1)
log_probs = torch.gather(
log_probs[:, :-1],
-1,
inputs["dec_input_ids"][:, 1:].unsqueeze(-1),
).squeeze(-1)
log_probs = log_probs.masked_fill(
~inputs["dec_attention_mask"][:, 1:], 0
)
out["loss_r"] = -log_probs.sum(-1)
out_c = self.loss_c(z, **inputs)
for k, v in out_c.items():
out[k] = v
out["kl"] = torch.zeros_like(out["loss_r"])
return out
def run_cond_ae_epoch(
model,
batches,
opt,
num_samples=1,
lambda_c=1.0,
lambda_r=1.0,
beta=1.0,
desc="",
notebook=True,
):
losses = {k: [] for k in ("loss_r", "loss_c", "kl", "acc")}
t = (
tqdm_notebook(batches, desc=desc)
if notebook
else tqdm(batches, desc=desc)
)
model.train()
for batch in t:
model_inputs = {
k: v.to(model.device)
for k, v in batch.items()
if type(v) == torch.Tensor
}
out = model(**model_inputs)
loss = (
lambda_r * out["loss_r"] + lambda_c * out["loss_c"]
).sum() + beta * out["kl"].sum()
opt.zero_grad()
loss.backward()
opt.step()
d = {}
for k in ("loss_r", "loss_c", "kl", "acc"):
d[k] = out[k].mean().item()
losses[k].append(out[k].detach().cpu().numpy())
t.set_postfix(d)
return {k: np.concatenate(v, 0) for k, v in losses.items()}
def run_cond_ae_eval(
model,
batches,
lambda_c=1.0,
beta=1.0,
desc="",
notebook=True,
):
losses = {k: [] for k in ("loss_r", "loss_c", "kl", "acc")}
t = (
tqdm_notebook(batches, desc=desc)
if notebook
else tqdm(batches, desc=desc)
)
model.eval()
for batch in t:
model_inputs = {
k: v.to(model.device)
for k, v in batch.items()
if type(v) == torch.Tensor
}
with torch.no_grad():
out = model(**model_inputs)
loss = (
out["loss_r"] + lambda_c * out["loss_c"]
).sum() + beta * out["kl"].sum()
d = {}
for k in ("loss_r", "loss_c", "kl", "acc"):
d[k] = out[k].mean().item()
losses[k].append(out[k].detach().cpu().numpy())
t.set_postfix(d)
return {k: np.concatenate(v, 0) for k, v in losses.items()}
def generate(
model,
tokenizer,
batch=None,
z=None,
do_sample=False,
max_length=128,
**kwargs,
):
if z is None:
with torch.no_grad():
z, _ = model.get_z(sample=False, **batch)
B, D = z.shape
else:
z = torch.tensor(z, device=model.device)
B, D = z.shape
D, L, H, K = (
model.decoder.hidden_dim,
model.decoder.num_layers,
model.decoder.num_heads,
model.decoder.prefix_length,
)
z_up = model.decoder.mlp(z).reshape(B, H, K, D // H, L, 2)
keys, vals = (t.squeeze(-1) for t in z_up.chunk(2, dim=-1))
layers = tuple(
[
(k.squeeze(-1), v.squeeze(-1))
for k, v in zip(keys.chunk(L, -1), vals.chunk(L, -1))
]
)
output = model.decoder.decoder.generate(
input_ids=torch.tensor(
[[tokenizer.bos_token_id]] * B, device=model.device
),
attention_mask=torch.ones((B, K + 1), device=model.device),
past=layers,
do_sample=do_sample,
max_length=max_length,
**kwargs,
)
lst = tokenizer.batch_decode(output[:, 1:])
return [l.replace("<|endoftext|>", "") for l in lst]
def get_embeddings(model, batches, desc="", notebook=True):
out = []
t = (
tqdm_notebook(batches, desc=desc)
if notebook
else tqdm(batches, desc=desc)
)
model.eval()
for batch in t:
with torch.no_grad():
model_inputs = {
k: v.to(model.device)
for k, v in batch.items()
if type(v) == torch.Tensor
}
z, _ = model.get_z(sample=False, **model_inputs)
out.append(z.detach().cpu().numpy())
return np.concatenate(out, 0)
def interpolate(model, tokenizer, a, b, num_steps=10, **kwargs):
z = np.stack(
[l * b + (1 - l) * a for l in np.linspace(0, 1.0, num_steps)], 0
)
return generate(model, tokenizer, z=z, **kwargs)