Daniele Picone commited on
Commit
7e7ca5d
·
1 Parent(s): 0665278

Updated readme

Browse files
Files changed (1) hide show
  1. README.md +43 -0
README.md CHANGED
@@ -1,3 +1,46 @@
1
  ---
2
  license: cc-by-nc-4.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-4.0
3
  ---
4
+
5
+ # Description
6
+
7
+ Series of weights recovered by training the `ligthning` torch model
8
+ UnrolledSystem implemented in:
9
+ (Unrolled demosaicking)[https://github.com/mattmull42/unrolled_demosaicking]
10
+
11
+ The network was trained over 15 color filter array patterns:
12
+ - `bayer`
13
+ - `binning`
14
+ - `chakrabarti`
15
+ - `gindele`
16
+ - `hamilton`
17
+ - `honda`
18
+ - `honda2`
19
+ - `kaizu`
20
+ - `kodak`
21
+ - `luo`
22
+ - `quad_bayer`
23
+ - `random`
24
+ - `sparse_3`
25
+ - `wang`
26
+
27
+ The network is based on U-NET, unrolled over 4 stages, and plugged into an ADMM solver. The network is trained over 300 natural images, cut into patches of size 64 x 64.
28
+
29
+ The three versions given in this repository are:
30
+ - `4`: Baseline weights.
31
+ - `4B`: Variant with different training set.
32
+ - `4V`: Introduces geometric transformations on the patterns.
33
+
34
+ # Citation
35
+
36
+ If you use this dataset, please cite:
37
+ ```bibtex
38
+ @InProceedings{muller_eusipco_2024,
39
+ author = {Muller, Matthieu and Picone, Daniele and Dalla Mura, Mauro and Ulfarsson, Magnus Orn},
40
+ booktitle = {European Signal Processing Conference ({EUSIPCO})},
41
+ title = {Pattern-invariant unrolling for robust demosaicking},
42
+ year = {2024},
43
+ }
44
+ ```
45
+
46
+