damlab commited on
Commit
9178ba6
1 Parent(s): 20e7a4e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -18,15 +18,15 @@ license: mit
18
 
19
  ## Summary
20
 
21
- [The HIV-BERT model was trained as a refinement of the ProtBert-BFD model (https://huggingface.co/Rostlab/prot_bert_bfd) for HIV centric tasks. It was refined with whole viral genomes from the Los Alamos HIV Sequence Database (https://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html). This pretraining is important for HIV related tasks as the original BFD database contains few viral proteins making it sub-optimal when used as the basis for transfer learning tasks. This model and other related HIV prediction tasks have been published (link).]
22
 
23
  ## Model Description
24
 
25
- [Like the original ProtBert-BFD model, this model encodes each amino acid as an individual token. This model was trained using Masked Language Modeling: a process in which a random set of tokens are masked with the model trained on their prediction. This model was trained using the damlab/hiv-flt dataset with 256 amino acid chunks and a 15% mask rate.]
26
 
27
  ## Intended Uses & Limitations
28
 
29
- [As a masked language model this tool can be used to predict expected mutations using a masking approach. This could be used to identify highly mutated sequences, sequencing artifacts, or other contexts. As a BERT model, this tool can also be used as the base for transfer learning. This pretrained model could be used as the base when developing HIV-specific classification tasks.]
30
 
31
  ## How to use
32
 
@@ -34,17 +34,17 @@ license: mit
34
 
35
  ## Training Data
36
 
37
- [The dataset damlab/HIV-FLT was used to refine the original rostlab/Prot-bert-bfd. This dataset contains 1790 full HIV genomes from across the globe. When translated, these genomes contain approximately 3.9 million amino-acid tokens.]
38
 
39
  ## Training Procedure
40
 
41
  ### Preprocessing
42
 
43
- [As with the rostlab/Prot-bert-bfd model, the rare amino acids U, Z, O, and B were converted to X and spaces were added between each amino acid. All strings were concatenated and chunked into 256 token chunks for training. A random 20% of chunks were held for validation.]
44
 
45
  ### Training
46
 
47
- [Training was performed with the HuggingFace training module using the MaskedLM data loader with a 15% masking rate. The learning rate was set at E-5, 50K warm-up steps, and a cosine_with_restarts learning rate schedule and continued until 3 consecutive epochs did not improve the loss on the held-out dataset.]
48
 
49
  ## Evaluation Results
50
 
 
18
 
19
  ## Summary
20
 
21
+ The HIV-BERT model was trained as a refinement of the ProtBert-BFD model (https://huggingface.co/Rostlab/prot_bert_bfd) for HIV centric tasks. It was refined with whole viral genomes from the Los Alamos HIV Sequence Database (https://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html). This pretraining is important for HIV related tasks as the original BFD database contains few viral proteins making it sub-optimal when used as the basis for transfer learning tasks. This model and other related HIV prediction tasks have been published (link).
22
 
23
  ## Model Description
24
 
25
+ Like the original ProtBert-BFD model, this model encodes each amino acid as an individual token. This model was trained using Masked Language Modeling: a process in which a random set of tokens are masked with the model trained on their prediction. This model was trained using the damlab/hiv-flt dataset with 256 amino acid chunks and a 15% mask rate.
26
 
27
  ## Intended Uses & Limitations
28
 
29
+ As a masked language model this tool can be used to predict expected mutations using a masking approach. This could be used to identify highly mutated sequences, sequencing artifacts, or other contexts. As a BERT model, this tool can also be used as the base for transfer learning. This pretrained model could be used as the base when developing HIV-specific classification tasks.
30
 
31
  ## How to use
32
 
 
34
 
35
  ## Training Data
36
 
37
+ The dataset damlab/HIV-FLT was used to refine the original rostlab/Prot-bert-bfd. This dataset contains 1790 full HIV genomes from across the globe. When translated, these genomes contain approximately 3.9 million amino-acid tokens.
38
 
39
  ## Training Procedure
40
 
41
  ### Preprocessing
42
 
43
+ As with the rostlab/Prot-bert-bfd model, the rare amino acids U, Z, O, and B were converted to X and spaces were added between each amino acid. All strings were concatenated and chunked into 256 token chunks for training. A random 20% of chunks were held for validation.
44
 
45
  ### Training
46
 
47
+ Training was performed with the HuggingFace training module using the MaskedLM data loader with a 15% masking rate. The learning rate was set at E-5, 50K warm-up steps, and a cosine_with_restarts learning rate schedule and continued until 3 consecutive epochs did not improve the loss on the held-out dataset.
48
 
49
  ## Evaluation Results
50