GPT-Vision / modeling_gpt2vision.py
damerajee's picture
Update modeling_gpt2vision.py
d6792f7 verified
raw
history blame
3.92 kB
import torch
import torch.nn as nn
from transformers import PreTrainedModel, AutoTokenizer
from .configuration_gpt2vision import GPT2VisionConfig
from .vision_encoder import VisionEncoder
from .modeling_gpt2 import GPT2LMHeadModel
IMAGE_TOKEN = "<image>"
ANSWER_EOS = "<|endoftext|>"
def resize_token_embeds(model_name="openai-community/gpt2"):
tokenizer = AutoTokenizer.from_pretrained(model_name)
new_tokens = {
"additional_special_tokens": [IMAGE_TOKEN]
}
tokenizer.add_special_tokens(new_tokens)
return tokenizer
tokenizer = resize_token_embeds()
class MLP(nn.Module):
def __init__(self, in_features: int, hidden_features: int = None, out_features: int = None):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = nn.GELU(approximate="tanh")
self.fc2 = nn.Linear(hidden_features, out_features)
self.dropout = nn.Dropout(p=0.1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.fc1(x)
x = self.act(x)
x = self.dropout(x)
x = self.fc2(x)
return x
class GPT2Vision(PreTrainedModel):
config_class = GPT2VisionConfig
def __init__(self, config):
super().__init__(config)
self.vision_encoder = VisionEncoder()
self.mlp = MLP(in_features=768, hidden_features=768 * 4, out_features=768)
self.language_model = GPT2LMHeadModel(config.gpt2_config)
self.language_model.resize_token_embeddings(len(tokenizer))
self.tokenizer = tokenizer
self.tokenizer.pad_token = self.tokenizer.eos_token
self.image_token_id = self.tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
@property
def device(self):
return next(self.language_model.parameters()).device
def preprocess_inputs(self, batch):
img_embs = batch['pixel_values']
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
input_ids = input_ids.to(self.device)
attention_mask = attention_mask.to(self.device)
img_embs = img_embs.to(self.device)
tok_embs = self.language_model.get_input_embeddings()(input_ids)
inputs_embeds = torch.cat((tok_embs[:, 0:1, :], img_embs, tok_embs[:, 1:, :]), dim=1)
img_attention = torch.ones((img_embs.size(0), img_embs.size(1)), dtype=torch.long, device=self.device)
attention_mask = torch.cat((attention_mask[:, 0:1], img_attention, attention_mask[:, 1:]), dim=1)
return inputs_embeds, attention_mask, input_ids
def generate(self, question, image, max_new_tokens=30, **kwargs):
# Process the image
# Convert the image to a tensor and add a batch dimension
with torch.no_grad():
img_features = self.vision_encoder(image,device=self.device)
img_embs = self.mlp(img_features)
# Tokenize the question
prompt = f"{IMAGE_TOKEN}Question: {question}\nAnswer:"
encoded_input = self.tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
batch = {
"pixel_values": img_embs,
"input_ids": encoded_input.input_ids.to(self.device),
"attention_mask": encoded_input.attention_mask.to(self.device)
}
inputs_embeds, attention_mask, input_ids = self.preprocess_inputs(batch)
output_sequences = self.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
pad_token_id=self.tokenizer.eos_token_id,
eos_token_id=self.tokenizer.eos_token_id,
max_new_tokens=max_new_tokens,
**kwargs
)
output = self.tokenizer.decode(output_sequences[0], skip_special_tokens=True)
return output