dalvarez's picture
Hi RL
b7edba6
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f474b4254d0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f474b425560>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f474b4255f0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f474b425680>",
"_build": "<function ActorCriticPolicy._build at 0x7f474b425710>",
"forward": "<function ActorCriticPolicy.forward at 0x7f474b4257a0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f474b425830>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f474b4258c0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f474b425950>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f474b4259e0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f474b425a70>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f474b470900>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 507904,
"_total_timesteps": 500000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1651708041.9386547,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGBpGD72KES2uae0uSbNh7Yympk7/lcgtwAAgD8AAIA/000fPlh4lj+wVYw+xNyPvp5k5T2O8wI9AAAAAAAAAACzGEe+T2k4vHXxN7vqRiK5//qlPY5EXjoAAIA/AACAPw1PET6kp0Q8ThCHvfUyNryVENA9K18uvQAAgD8AAIA/oEoFvvaUKz+4uIY9/AZtvmEfFT3ETB69AAAAAAAAAAB6cX0+h7MDP4C3H75cyHy+AXYgO3ICBz0AAAAAAAAAAABh4L3hirg5a/rvulFLlDnjxR+7Y0GmNwAAgD8AAIA/GvT7PcOtcrryKxq7q4+iNPAaBLtaby86AACAPwAAgD86poc+nznFuyxzjLwV2IU5cZYXvQ5CZDoAAIA/AACAP5rfF71WzrA/zqHpvtRGUb4rNe67LQPsvQAAAAAAAAAAU243PtcEUjwzmPm49boDt2cS2j2y2x04AACAPwAAgD/NVEu8e2adusv3T7spe/w2+JbXOvVhYbYAAIA/AACAP5rtuD1xbWa5QdAwO11okrY6TVm7Xl9OugAAgD8AAIA/UiWDvrhzzTw34Ro649e3uMMCXr42KU65AACAPwAAgD/NEL+8mmICPuXdiTmP1iu+rdzKvSZY0jwAAAAAAAAAADPvPrzDWUW6E8pnu9MenjbZ7826bjGFOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiEuOOyUXZECUhpRSlIwBbJRN6AOMAXSUR0CHxu8ox59mdX2UKGgGaAloD0MIUmStodTDWUCUhpRSlGgVTegDaBZHQIfZSb6P8yh1fZQoaAZoCWgPQwgGvMyw0eZqQJSGlFKUaBVNbwJoFkdAh+VGEwnIAHV9lChoBmgJaA9DCN3NUx1ywllAlIaUUpRoFU3oA2gWR0CH6yF49ovjdX2UKGgGaAloD0MIA8+9h0vnWkCUhpRSlGgVTegDaBZHQIf5JP9DQZ51fZQoaAZoCWgPQwioUx7dCMZbQJSGlFKUaBVN6ANoFkdAh/10JF9a2XV9lChoBmgJaA9DCClcj8L1EFlAlIaUUpRoFU3oA2gWR0CIBS/HHWBjdX2UKGgGaAloD0MITkUqjC3nVECUhpRSlGgVTegDaBZHQIgQbGcWj451fZQoaAZoCWgPQwgtXcE2YgxoQJSGlFKUaBVNyAFoFkdAiBIE7wKBunV9lChoBmgJaA9DCGB4JclzgTVAlIaUUpRoFU0WAWgWR0CIEsCGN70GdX2UKGgGaAloD0MIQu23dqLlVECUhpRSlGgVTegDaBZHQIgaAlt0mt11fZQoaAZoCWgPQwjcSNkiaRVQwJSGlFKUaBVNoQFoFkdAiByW+fywwHV9lChoBmgJaA9DCBIwury5/GNAlIaUUpRoFU3oA2gWR0CIHxZha1TjdX2UKGgGaAloD0MIwy0fSUkvCsCUhpRSlGgVS/xoFkdAiCLohpxm03V9lChoBmgJaA9DCLaeIRyzzFZAlIaUUpRoFU3oA2gWR0CIP1d/J/5MdX2UKGgGaAloD0MIzNJOzeUWXkCUhpRSlGgVTegDaBZHQIhC8ejmCAd1fZQoaAZoCWgPQwhZ94+F6IJDwJSGlFKUaBVNVQFoFkdAiENA3kxREXV9lChoBmgJaA9DCPLrh9hgvTvAlIaUUpRoFU0kAWgWR0CIRc3w1BMSdX2UKGgGaAloD0MInOCbps/4VkCUhpRSlGgVTegDaBZHQIhJ1fzBhx51fZQoaAZoCWgPQwgPY9LfS79MQJSGlFKUaBVN6ANoFkdAiEuXeFcps3V9lChoBmgJaA9DCLL0oQvq3z1AlIaUUpRoFU0jAWgWR0CITw8SwnpjdX2UKGgGaAloD0MI2XxcG6oEYkCUhpRSlGgVTdUBaBZHQIhXbLbHp8p1fZQoaAZoCWgPQwiuYYbGE55iQJSGlFKUaBVN6ANoFkdAiFgSTY/Vy3V9lChoBmgJaA9DCGH9n8N8xFxAlIaUUpRoFU3oA2gWR0CIW01Muez2dX2UKGgGaAloD0MI2jwOg/leUMCUhpRSlGgVTTEBaBZHQIifVwkxASp1fZQoaAZoCWgPQwiqSfCGNAxDwJSGlFKUaBVL+mgWR0CIoUH1vl2edX2UKGgGaAloD0MIPGpMiLmUIcCUhpRSlGgVTRYBaBZHQIirJOafBep1fZQoaAZoCWgPQwhbCkj7H71cQJSGlFKUaBVN6ANoFkdAiLbP+GXXy3V9lChoBmgJaA9DCDFgyVUsJkdAlIaUUpRoFU0zAWgWR0CIv2hW5paidX2UKGgGaAloD0MIuJBHcCPxXkCUhpRSlGgVTegDaBZHQIjErGcWj451fZQoaAZoCWgPQwgr24e85UYyQJSGlFKUaBVNDwFoFkdAiM1bQLNOd3V9lChoBmgJaA9DCO4/Mh06iVZAlIaUUpRoFU3oA2gWR0CI0QJtSAH3dX2UKGgGaAloD0MItrkxPWEvXkCUhpRSlGgVTegDaBZHQIjeIzabnYB1fZQoaAZoCWgPQwhyameY2mlZQJSGlFKUaBVN6ANoFkdAiOqZyMkyDnV9lChoBmgJaA9DCKQXtftVXlxAlIaUUpRoFU3oA2gWR0CI7ao/iYLLdX2UKGgGaAloD0MI7FG4HoV3MUCUhpRSlGgVTTEBaBZHQIjxlGwzLwF1fZQoaAZoCWgPQwgBwRw9frs7wJSGlFKUaBVL3mgWR0CI8bzEJjUedX2UKGgGaAloD0MI1F+vsOBZXECUhpRSlGgVTegDaBZHQIkV74i5d4V1fZQoaAZoCWgPQwjoFORnIzxiQJSGlFKUaBVN6ANoFkdAiRZM/QjUu3V9lChoBmgJaA9DCA6itaLNKFpAlIaUUpRoFU3oA2gWR0CJGRRoAXEZdX2UKGgGaAloD0MIHVa45SPgXECUhpRSlGgVTegDaBZHQIkfVVtGd7R1fZQoaAZoCWgPQwivJHmu7xsrQJSGlFKUaBVNRgFoFkdAiShVcMVk+XV9lChoBmgJaA9DCAFtq1ln5GFAlIaUUpRoFU3oA2gWR0CJLSq4pc5bdX2UKGgGaAloD0MIuoWuRKAjWUCUhpRSlGgVTegDaBZHQIkt5zHS4ON1fZQoaAZoCWgPQwhuNIC3QGIKQJSGlFKUaBVL9WgWR0CJcX/xUedTdX2UKGgGaAloD0MIfsaFAyHPXUCUhpRSlGgVTegDaBZHQIl3G6I3zc11fZQoaAZoCWgPQwjFkJxM3C40QJSGlFKUaBVNAgFoFkdAiXvbu2JBPnV9lChoBmgJaA9DCMOgTKPJE2FAlIaUUpRoFU3oA2gWR0CJgkSWZ7XydX2UKGgGaAloD0MI7GmHvyZjO0CUhpRSlGgVS/RoFkdAiYZbdSEUTXV9lChoBmgJaA9DCOsbmNwoCV5AlIaUUpRoFU3oA2gWR0CJjOH5aePJdX2UKGgGaAloD0MIjzaOWIv4W0CUhpRSlGgVTegDaBZHQImZbdepn6F1fZQoaAZoCWgPQwjyJr9Fp7phQJSGlFKUaBVN6ANoFkdAiaXJnxri2nV9lChoBmgJaA9DCHFV2XdFjGBAlIaUUpRoFU3oA2gWR0CJtBBFd9lVdX2UKGgGaAloD0MIjINLx5y7W0CUhpRSlGgVTegDaBZHQInBRA4XGfh1fZQoaAZoCWgPQwiKOQg6Wv9dQJSGlFKUaBVN6ANoFkdAicTNkOI683V9lChoBmgJaA9DCAd6qG3DFF9AlIaUUpRoFU3oA2gWR0CJyTbxEv0zdX2UKGgGaAloD0MIOq5GdqVhWECUhpRSlGgVTegDaBZHQInwY5aNdZ91fZQoaAZoCWgPQwjpfk5Bfs1WQJSGlFKUaBVN6ANoFkdAifOwfp2U0XV9lChoBmgJaA9DCGlU4GQbs2FAlIaUUpRoFU3oA2gWR0CKBnfUF0PpdX2UKGgGaAloD0MIIqmFksm1XkCUhpRSlGgVTegDaBZHQIoM4iaAnUl1fZQoaAZoCWgPQwiHiQYpeBxdQJSGlFKUaBVN6ANoFkdAilRilJpWWHV9lChoBmgJaA9DCJj2zf3V6V1AlIaUUpRoFU3oA2gWR0CKWp59mYjTdX2UKGgGaAloD0MIAAFr1a70YUCUhpRSlGgVTegDaBZHQIpgBPuXu3N1fZQoaAZoCWgPQwjvAbovZwY5QJSGlFKUaBVNPAFoFkdAimBIrWiDd3V9lChoBmgJaA9DCDofniXI6lRAlIaUUpRoFU3oA2gWR0CKZnKcurZKdX2UKGgGaAloD0MIuCIxQQ1zV0CUhpRSlGgVTegDaBZHQIpqenfl6qt1fZQoaAZoCWgPQwhAGHjuPXRjQJSGlFKUaBVNkwJoFkdAimxH8TBZZHV9lChoBmgJaA9DCFLvqZz2IFtAlIaUUpRoFU3oA2gWR0CKb80k4WDZdX2UKGgGaAloD0MIQSybOSTSYkCUhpRSlGgVTegDaBZHQIp6Tu+h4+t1fZQoaAZoCWgPQwhZUu4+x38nwJSGlFKUaBVL62gWR0CKf1EzfrKOdX2UKGgGaAloD0MIpu7KLhg5XUCUhpRSlGgVTegDaBZHQIqEShL5AQh1fZQoaAZoCWgPQwht/l91ZEFiQJSGlFKUaBVN6ANoFkdAipAL0Bfa6HV9lChoBmgJaA9DCEdYVMRp5mBAlIaUUpRoFU3oA2gWR0CKnmwxFiKBdX2UKGgGaAloD0MIA7Fs5hCTYUCUhpRSlGgVTegDaBZHQIqigiX6ZYx1fZQoaAZoCWgPQwgsvMtFfIcfQJSGlFKUaBVNHgFoFkdAirAzuWrwOXV9lChoBmgJaA9DCESF6ubiRzRAlIaUUpRoFU1SAWgWR0CKyCKohpxndX2UKGgGaAloD0MILskBu5omUECUhpRSlGgVTegDaBZHQIrJysOoYN11fZQoaAZoCWgPQwh2/u2y36BhQJSGlFKUaBVN6ANoFkdAitwefAbhnHV9lChoBmgJaA9DCLovZ7YrxFpAlIaUUpRoFU3oA2gWR0CK4tHbRF7VdX2UKGgGaAloD0MICRhd3hy9YUCUhpRSlGgVTegDaBZHQIr0zkELYwt1fZQoaAZoCWgPQwgSo+cWupBhQJSGlFKUaBVN6ANoFkdAizLZoGpuM3V9lChoBmgJaA9DCJ4LI72okmBAlIaUUpRoFU3oA2gWR0CLONVfeDWcdX2UKGgGaAloD0MIrimQ2VlNYkCUhpRSlGgVTegDaBZHQItAniHZbpx1fZQoaAZoCWgPQwinzM03Io5hQJSGlFKUaBVN6ANoFkdAi0Wai0v4/XV9lChoBmgJaA9DCNTzbiwoDl9AlIaUUpRoFU3oA2gWR0CLR+nBtUGWdX2UKGgGaAloD0MIINCZtKksXUCUhpRSlGgVTegDaBZHQItMWLgn+hp1fZQoaAZoCWgPQwjspSkCnMxfQJSGlFKUaBVN6ANoFkdAi1gnE2pAEHV9lChoBmgJaA9DCGRz1TxHEDTAlIaUUpRoFUvsaBZHQItdsrqdH2B1fZQoaAZoCWgPQwgNp8zNN1deQJSGlFKUaBVN6ANoFkdAi13L9/BnBnV9lChoBmgJaA9DCMjsLHqnUhNAlIaUUpRoFU08AWgWR0CLc9AC4jKQdX2UKGgGaAloD0MIG0mCcIVzYUCUhpRSlGgVTegDaBZHQIt9NdxAB1d1fZQoaAZoCWgPQwjVk/lH3+ZbQJSGlFKUaBVN6ANoFkdAi4E80UGmk3V9lChoBmgJaA9DCK+ZfLPNbTtAlIaUUpRoFU0YAWgWR0CLh/6JIlMRdX2UKGgGaAloD0MIfm/Tn/34XECUhpRSlGgVTegDaBZHQIuOcTYdyT91fZQoaAZoCWgPQwidK0oJQR1gQJSGlFKUaBVN6ANoFkdAi6NnuRcNY3V9lChoBmgJaA9DCHP2zmiraV1AlIaUUpRoFU3oA2gWR0CLpOWGh24edX2UKGgGaAloD0MILsVVZd8nYECUhpRSlGgVTegDaBZHQIu0T8gpz911fZQoaAZoCWgPQwigGFkyx41YQJSGlFKUaBVN6ANoFkdAi7obkGRmsnV9lChoBmgJaA9DCJJbk27LwmJAlIaUUpRoFU3oA2gWR0CLyQ1PWQOndX2UKGgGaAloD0MI4gFlU67MYECUhpRSlGgVTegDaBZHQIvPIA0bcXZ1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 124,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}