Update modeling_llama.py
Browse filesupdating based on transformers==4.49
- modeling_llama.py +677 -474
modeling_llama.py
CHANGED
|
@@ -17,162 +17,68 @@
|
|
| 17 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
# See the License for the specific language governing permissions and
|
| 19 |
# limitations under the License.
|
|
|
|
|
|
|
| 20 |
import math
|
|
|
|
| 21 |
from typing import List, Optional, Tuple, Union
|
| 22 |
|
| 23 |
import torch
|
| 24 |
import torch.nn.functional as F
|
| 25 |
import torch.utils.checkpoint
|
| 26 |
from torch import nn
|
|
|
|
| 27 |
|
| 28 |
-
from transformers.models.llama.modeling_llama import LlamaRMSNorm
|
| 29 |
from transformers.activations import ACT2FN
|
| 30 |
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
| 31 |
-
from transformers.generation import GenerationMixin
|
| 32 |
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 33 |
-
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs, _flash_attention_forward
|
| 34 |
from transformers.modeling_outputs import (
|
| 35 |
BaseModelOutputWithPast,
|
| 36 |
CausalLMOutputWithPast,
|
| 37 |
QuestionAnsweringModelOutput,
|
| 38 |
SequenceClassifierOutputWithPast,
|
| 39 |
-
TokenClassifierOutput,
|
| 40 |
)
|
| 41 |
-
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
| 42 |
from transformers.modeling_utils import PreTrainedModel
|
| 43 |
-
from transformers.processing_utils import Unpack
|
| 44 |
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
| 45 |
from transformers.utils import (
|
| 46 |
-
LossKwargs,
|
| 47 |
-
add_code_sample_docstrings,
|
| 48 |
add_start_docstrings,
|
| 49 |
add_start_docstrings_to_model_forward,
|
|
|
|
| 50 |
is_flash_attn_greater_or_equal_2_10,
|
| 51 |
logging,
|
| 52 |
replace_return_docstrings,
|
| 53 |
)
|
| 54 |
from .configuration_llama import LlamaConfig
|
| 55 |
-
from transformers.models.llama.modeling_llama import
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
_CHECKPOINT_FOR_DOC = "meta-llama/Llama-2-7b-hf"
|
| 61 |
-
_CONFIG_FOR_DOC = "LlamaConfig"
|
| 62 |
-
|
| 63 |
-
ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
class LlamaRotaryEmbedding(nn.Module):
|
| 67 |
-
def __init__(
|
| 68 |
-
self,
|
| 69 |
-
dim=None,
|
| 70 |
-
max_position_embeddings=2048,
|
| 71 |
-
base=10000,
|
| 72 |
-
device=None,
|
| 73 |
-
scaling_factor=1.0,
|
| 74 |
-
rope_type="default",
|
| 75 |
-
config: Optional[LlamaConfig] = None,
|
| 76 |
-
):
|
| 77 |
-
super().__init__()
|
| 78 |
-
# TODO (joao): remove the `if` below, only used for BC
|
| 79 |
-
self.rope_kwargs = {}
|
| 80 |
-
if config is None:
|
| 81 |
-
logger.warning_once(
|
| 82 |
-
"`LlamaRotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
| 83 |
-
"`config` argument. All other arguments will be removed in v4.46"
|
| 84 |
-
)
|
| 85 |
-
self.rope_kwargs = {
|
| 86 |
-
"rope_type": rope_type,
|
| 87 |
-
"factor": scaling_factor,
|
| 88 |
-
"dim": dim,
|
| 89 |
-
"base": base,
|
| 90 |
-
"max_position_embeddings": max_position_embeddings,
|
| 91 |
-
}
|
| 92 |
-
self.rope_type = rope_type
|
| 93 |
-
self.max_seq_len_cached = max_position_embeddings
|
| 94 |
-
self.original_max_seq_len = max_position_embeddings
|
| 95 |
-
else:
|
| 96 |
-
# BC: "rope_type" was originally "type"
|
| 97 |
-
if config.rope_scaling is not None:
|
| 98 |
-
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 99 |
-
else:
|
| 100 |
-
self.rope_type = "default"
|
| 101 |
-
self.max_seq_len_cached = config.max_position_embeddings
|
| 102 |
-
self.original_max_seq_len = config.max_position_embeddings
|
| 103 |
-
|
| 104 |
-
self.config = config
|
| 105 |
-
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 106 |
-
|
| 107 |
-
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
| 108 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 109 |
-
self.original_inv_freq = self.inv_freq
|
| 110 |
-
|
| 111 |
-
def _dynamic_frequency_update(self, position_ids, device):
|
| 112 |
-
"""
|
| 113 |
-
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
| 114 |
-
1 - growing beyond the cached sequence length (allow scaling)
|
| 115 |
-
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
| 116 |
-
"""
|
| 117 |
-
seq_len = torch.max(position_ids) + 1
|
| 118 |
-
if seq_len > self.max_seq_len_cached: # growth
|
| 119 |
-
inv_freq, self.attention_scaling = self.rope_init_fn(
|
| 120 |
-
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
| 121 |
-
)
|
| 122 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
| 123 |
-
self.max_seq_len_cached = seq_len
|
| 124 |
-
|
| 125 |
-
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
| 126 |
-
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
| 127 |
-
self.max_seq_len_cached = self.original_max_seq_len
|
| 128 |
|
| 129 |
-
@torch.no_grad()
|
| 130 |
-
def forward(self, x, position_ids):
|
| 131 |
-
if "dynamic" in self.rope_type:
|
| 132 |
-
self._dynamic_frequency_update(position_ids, device=x.device)
|
| 133 |
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
| 138 |
-
device_type = x.device.type
|
| 139 |
-
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 140 |
-
with torch.autocast(device_type=device_type, enabled=False):
|
| 141 |
-
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 142 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
| 143 |
-
cos = emb.cos()
|
| 144 |
-
sin = emb.sin()
|
| 145 |
|
| 146 |
-
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
| 147 |
-
cos = cos * self.attention_scaling
|
| 148 |
-
sin = sin * self.attention_scaling
|
| 149 |
|
| 150 |
-
|
| 151 |
|
|
|
|
| 152 |
|
| 153 |
-
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
| 154 |
-
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
| 155 |
-
|
| 156 |
-
def __init__(self, *args, **kwargs):
|
| 157 |
-
logger.warning_once(
|
| 158 |
-
"`LlamaLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
|
| 159 |
-
"`LlamaRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
|
| 160 |
-
)
|
| 161 |
-
kwargs["rope_type"] = "linear"
|
| 162 |
-
super().__init__(*args, **kwargs)
|
| 163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
-
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
| 166 |
-
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
| 167 |
|
| 168 |
-
|
| 169 |
-
logger.warning_once(
|
| 170 |
-
"`LlamaDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
|
| 171 |
-
"`LlamaRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
|
| 172 |
-
"__init__)."
|
| 173 |
-
)
|
| 174 |
-
kwargs["rope_type"] = "dynamic"
|
| 175 |
-
super().__init__(*args, **kwargs)
|
| 176 |
|
| 177 |
|
| 178 |
class LlamaMLP(nn.Module):
|
|
@@ -181,9 +87,9 @@ class LlamaMLP(nn.Module):
|
|
| 181 |
self.config = config
|
| 182 |
self.hidden_size = config.hidden_size
|
| 183 |
self.intermediate_size = config.intermediate_size
|
| 184 |
-
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=
|
| 185 |
-
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=
|
| 186 |
-
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=
|
| 187 |
self.act_fn = ACT2FN[config.hidden_act]
|
| 188 |
|
| 189 |
def forward(self, x):
|
|
@@ -194,13 +100,24 @@ class LlamaMLP(nn.Module):
|
|
| 194 |
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
| 195 |
|
| 196 |
gate_proj = torch.cat(
|
| 197 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
)
|
| 199 |
-
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
| 200 |
|
| 201 |
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
| 202 |
down_proj = [
|
| 203 |
-
F.linear(intermediate_states[i], down_proj_slices[i])
|
|
|
|
| 204 |
]
|
| 205 |
down_proj = sum(down_proj)
|
| 206 |
else:
|
|
@@ -217,7 +134,9 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
| 217 |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 218 |
if n_rep == 1:
|
| 219 |
return hidden_states
|
| 220 |
-
hidden_states = hidden_states[:, :, None, :, :].expand(
|
|
|
|
|
|
|
| 221 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 222 |
|
| 223 |
|
|
@@ -238,20 +157,59 @@ class LlamaAttention(nn.Module):
|
|
| 238 |
self.attention_dropout = config.attention_dropout
|
| 239 |
self.hidden_size = config.hidden_size
|
| 240 |
self.num_heads = config.num_attention_heads
|
| 241 |
-
self.head_dim =
|
| 242 |
self.num_key_value_heads = config.num_key_value_heads
|
| 243 |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 244 |
self.max_position_embeddings = config.max_position_embeddings
|
| 245 |
self.rope_theta = config.rope_theta
|
| 246 |
self.is_causal = True
|
| 247 |
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
-
|
| 254 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
def forward(
|
| 257 |
self,
|
|
@@ -262,26 +220,36 @@ class LlamaAttention(nn.Module):
|
|
| 262 |
output_attentions: bool = False,
|
| 263 |
use_cache: bool = False,
|
| 264 |
cache_position: Optional[torch.LongTensor] = None,
|
| 265 |
-
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 266 |
**kwargs,
|
| 267 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 268 |
bsz, q_len, _ = hidden_states.size()
|
| 269 |
|
| 270 |
if self.config.pretraining_tp > 1:
|
| 271 |
-
key_value_slicing = (
|
|
|
|
|
|
|
| 272 |
query_slices = self.q_proj.weight.split(
|
| 273 |
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
| 274 |
)
|
| 275 |
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
| 276 |
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
| 277 |
|
| 278 |
-
query_states = [
|
|
|
|
|
|
|
|
|
|
| 279 |
query_states = torch.cat(query_states, dim=-1)
|
| 280 |
|
| 281 |
-
key_states = [
|
|
|
|
|
|
|
|
|
|
| 282 |
key_states = torch.cat(key_states, dim=-1)
|
| 283 |
|
| 284 |
-
value_states = [
|
|
|
|
|
|
|
|
|
|
| 285 |
value_states = torch.cat(value_states, dim=-1)
|
| 286 |
|
| 287 |
else:
|
|
@@ -289,38 +257,47 @@ class LlamaAttention(nn.Module):
|
|
| 289 |
key_states = self.k_proj(hidden_states)
|
| 290 |
value_states = self.v_proj(hidden_states)
|
| 291 |
|
| 292 |
-
query_states = query_states.view(
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
cos, sin
|
| 306 |
-
|
| 307 |
|
| 308 |
if past_key_value is not None:
|
| 309 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 310 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 311 |
-
key_states, value_states = past_key_value.update(
|
|
|
|
|
|
|
| 312 |
|
| 313 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 314 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 315 |
-
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
if attention_mask is not None: # no matter the length, we just slice it
|
| 318 |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 319 |
attn_weights = attn_weights + causal_mask
|
| 320 |
|
| 321 |
# upcast attention to fp32
|
| 322 |
-
attn_weights = nn.functional.softmax(
|
| 323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
attn_output = torch.matmul(attn_weights, value_states)
|
| 325 |
|
| 326 |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
|
@@ -331,12 +308,21 @@ class LlamaAttention(nn.Module):
|
|
| 331 |
|
| 332 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 333 |
|
| 334 |
-
attn_output = attn_output.reshape(bsz, q_len,
|
| 335 |
|
| 336 |
if self.config.pretraining_tp > 1:
|
| 337 |
-
attn_output = attn_output.split(
|
| 338 |
-
|
| 339 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
else:
|
| 341 |
attn_output = self.o_proj(attn_output)
|
| 342 |
|
|
@@ -370,15 +356,8 @@ class LlamaFlashAttention2(LlamaAttention):
|
|
| 370 |
output_attentions: bool = False,
|
| 371 |
use_cache: bool = False,
|
| 372 |
cache_position: Optional[torch.LongTensor] = None,
|
| 373 |
-
|
| 374 |
-
**kwargs: Unpack[FlashAttentionKwargs],
|
| 375 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 376 |
-
if isinstance(past_key_value, StaticCache):
|
| 377 |
-
raise ValueError(
|
| 378 |
-
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
| 379 |
-
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
| 380 |
-
)
|
| 381 |
-
|
| 382 |
output_attentions = False
|
| 383 |
|
| 384 |
bsz, q_len, _ = hidden_states.size()
|
|
@@ -390,26 +369,29 @@ class LlamaFlashAttention2(LlamaAttention):
|
|
| 390 |
# Flash attention requires the input to have the shape
|
| 391 |
# batch_size x seq_length x head_dim x hidden_dim
|
| 392 |
# therefore we just need to keep the original shape
|
| 393 |
-
query_states = query_states.view(
|
| 394 |
-
|
| 395 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 396 |
|
| 397 |
-
|
| 398 |
-
logger.warning_once(
|
| 399 |
-
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
| 400 |
-
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
| 401 |
-
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
| 402 |
-
"removed and `position_embeddings` will be mandatory."
|
| 403 |
-
)
|
| 404 |
-
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 405 |
-
else:
|
| 406 |
-
cos, sin = position_embeddings
|
| 407 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 408 |
|
| 409 |
if past_key_value is not None:
|
| 410 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 411 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 412 |
-
key_states, value_states = past_key_value.update(
|
|
|
|
|
|
|
| 413 |
|
| 414 |
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
| 415 |
# to be able to avoid many of these transpose/reshape/view.
|
|
@@ -445,21 +427,16 @@ class LlamaFlashAttention2(LlamaAttention):
|
|
| 445 |
key_states = key_states.to(target_dtype)
|
| 446 |
value_states = value_states.to(target_dtype)
|
| 447 |
|
| 448 |
-
attn_output = _flash_attention_forward(
|
| 449 |
query_states,
|
| 450 |
key_states,
|
| 451 |
value_states,
|
| 452 |
attention_mask,
|
| 453 |
q_len,
|
| 454 |
-
position_ids=position_ids,
|
| 455 |
dropout=dropout_rate,
|
| 456 |
-
sliding_window=getattr(self, "sliding_window", None),
|
| 457 |
-
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
| 458 |
-
is_causal=self.is_causal,
|
| 459 |
-
**kwargs,
|
| 460 |
)
|
| 461 |
|
| 462 |
-
attn_output = attn_output.reshape(bsz, q_len,
|
| 463 |
attn_output = self.o_proj(attn_output)
|
| 464 |
|
| 465 |
if not output_attentions:
|
|
@@ -467,6 +444,131 @@ class LlamaFlashAttention2(LlamaAttention):
|
|
| 467 |
|
| 468 |
return attn_output, attn_weights, past_key_value
|
| 469 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 470 |
|
| 471 |
class LlamaSdpaAttention(LlamaAttention):
|
| 472 |
"""
|
|
@@ -485,8 +587,6 @@ class LlamaSdpaAttention(LlamaAttention):
|
|
| 485 |
output_attentions: bool = False,
|
| 486 |
use_cache: bool = False,
|
| 487 |
cache_position: Optional[torch.LongTensor] = None,
|
| 488 |
-
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 489 |
-
**kwargs,
|
| 490 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 491 |
if output_attentions:
|
| 492 |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
|
@@ -502,7 +602,6 @@ class LlamaSdpaAttention(LlamaAttention):
|
|
| 502 |
output_attentions=output_attentions,
|
| 503 |
use_cache=use_cache,
|
| 504 |
cache_position=cache_position,
|
| 505 |
-
position_embeddings=position_embeddings,
|
| 506 |
)
|
| 507 |
|
| 508 |
bsz, q_len, _ = hidden_states.size()
|
|
@@ -511,26 +610,30 @@ class LlamaSdpaAttention(LlamaAttention):
|
|
| 511 |
key_states = self.k_proj(hidden_states)
|
| 512 |
value_states = self.v_proj(hidden_states)
|
| 513 |
|
| 514 |
-
query_states = query_states.view(
|
| 515 |
-
|
| 516 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 517 |
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
| 521 |
-
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
| 522 |
-
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
| 523 |
-
"removed and `position_embeddings` will be mandatory."
|
| 524 |
-
)
|
| 525 |
-
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 526 |
-
else:
|
| 527 |
-
cos, sin = position_embeddings
|
| 528 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 529 |
|
| 530 |
if past_key_value is not None:
|
| 531 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 532 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 533 |
-
key_states, value_states = past_key_value.update(
|
|
|
|
|
|
|
| 534 |
|
| 535 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 536 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
@@ -546,21 +649,19 @@ class LlamaSdpaAttention(LlamaAttention):
|
|
| 546 |
key_states = key_states.contiguous()
|
| 547 |
value_states = value_states.contiguous()
|
| 548 |
|
| 549 |
-
#
|
| 550 |
-
#
|
| 551 |
-
is_causal = True if causal_mask is None and q_len > 1 else False
|
| 552 |
-
|
| 553 |
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 554 |
query_states,
|
| 555 |
key_states,
|
| 556 |
value_states,
|
| 557 |
attn_mask=causal_mask,
|
| 558 |
dropout_p=self.attention_dropout if self.training else 0.0,
|
| 559 |
-
is_causal=
|
| 560 |
)
|
| 561 |
|
| 562 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 563 |
-
attn_output = attn_output.view(bsz, q_len,
|
| 564 |
|
| 565 |
attn_output = self.o_proj(attn_output)
|
| 566 |
|
|
@@ -579,24 +680,29 @@ class LlamaDecoderLayer(nn.Module):
|
|
| 579 |
super().__init__()
|
| 580 |
self.hidden_size = config.hidden_size
|
| 581 |
|
| 582 |
-
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](
|
|
|
|
|
|
|
| 583 |
|
| 584 |
self.mlp = LlamaMLP(config)
|
| 585 |
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 586 |
-
self.post_attention_layernorm = LlamaRMSNorm(
|
|
|
|
|
|
|
| 587 |
|
| 588 |
def forward(
|
| 589 |
self,
|
| 590 |
hidden_states: torch.Tensor,
|
| 591 |
attention_mask: Optional[torch.Tensor] = None,
|
| 592 |
position_ids: Optional[torch.LongTensor] = None,
|
| 593 |
-
past_key_value: Optional[
|
| 594 |
output_attentions: Optional[bool] = False,
|
| 595 |
use_cache: Optional[bool] = False,
|
| 596 |
cache_position: Optional[torch.LongTensor] = None,
|
| 597 |
-
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 598 |
**kwargs,
|
| 599 |
-
) -> Tuple[
|
|
|
|
|
|
|
| 600 |
"""
|
| 601 |
Args:
|
| 602 |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
@@ -610,15 +716,12 @@ class LlamaDecoderLayer(nn.Module):
|
|
| 610 |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 611 |
(see `past_key_values`).
|
| 612 |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 613 |
-
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 614 |
-
Indices depicting the position of the input sequence tokens in the sequence
|
| 615 |
-
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
| 616 |
-
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
| 617 |
-
with `head_dim` being the embedding dimension of each attention head.
|
| 618 |
-
kwargs (`dict`, *optional*):
|
| 619 |
-
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
| 620 |
-
into the model
|
| 621 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 622 |
residual = hidden_states
|
| 623 |
|
| 624 |
hidden_states = self.input_layernorm(hidden_states)
|
|
@@ -632,7 +735,6 @@ class LlamaDecoderLayer(nn.Module):
|
|
| 632 |
output_attentions=output_attentions,
|
| 633 |
use_cache=use_cache,
|
| 634 |
cache_position=cache_position,
|
| 635 |
-
position_embeddings=position_embeddings,
|
| 636 |
**kwargs,
|
| 637 |
)
|
| 638 |
hidden_states = residual + hidden_states
|
|
@@ -684,8 +786,6 @@ class LlamaPreTrainedModel(PreTrainedModel):
|
|
| 684 |
_supports_flash_attn_2 = True
|
| 685 |
_supports_sdpa = True
|
| 686 |
_supports_cache_class = True
|
| 687 |
-
_supports_quantized_cache = True
|
| 688 |
-
_supports_static_cache = True
|
| 689 |
|
| 690 |
def _init_weights(self, module):
|
| 691 |
std = self.config.initializer_range
|
|
@@ -698,6 +798,32 @@ class LlamaPreTrainedModel(PreTrainedModel):
|
|
| 698 |
if module.padding_idx is not None:
|
| 699 |
module.weight.data[module.padding_idx].zero_()
|
| 700 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 701 |
|
| 702 |
LLAMA_INPUTS_DOCSTRING = r"""
|
| 703 |
Args:
|
|
@@ -740,8 +866,7 @@ LLAMA_INPUTS_DOCSTRING = r"""
|
|
| 740 |
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 741 |
|
| 742 |
Two formats are allowed:
|
| 743 |
-
- a [`~cache_utils.Cache`] instance
|
| 744 |
-
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
| 745 |
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 746 |
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
| 747 |
cache format.
|
|
@@ -791,12 +916,16 @@ class LlamaModel(LlamaPreTrainedModel):
|
|
| 791 |
self.padding_idx = config.pad_token_id
|
| 792 |
self.vocab_size = config.vocab_size
|
| 793 |
|
| 794 |
-
self.embed_tokens = nn.Embedding(
|
|
|
|
|
|
|
| 795 |
self.layers = nn.ModuleList(
|
| 796 |
-
[
|
|
|
|
|
|
|
|
|
|
| 797 |
)
|
| 798 |
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 799 |
-
self.rotary_emb = LlamaRotaryEmbedding(config=config)
|
| 800 |
self.gradient_checkpointing = False
|
| 801 |
|
| 802 |
# Initialize weights and apply final processing
|
|
@@ -814,24 +943,33 @@ class LlamaModel(LlamaPreTrainedModel):
|
|
| 814 |
input_ids: torch.LongTensor = None,
|
| 815 |
attention_mask: Optional[torch.Tensor] = None,
|
| 816 |
position_ids: Optional[torch.LongTensor] = None,
|
| 817 |
-
past_key_values: Optional[
|
| 818 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 819 |
use_cache: Optional[bool] = None,
|
| 820 |
output_attentions: Optional[bool] = None,
|
| 821 |
output_hidden_states: Optional[bool] = None,
|
| 822 |
return_dict: Optional[bool] = None,
|
| 823 |
cache_position: Optional[torch.LongTensor] = None,
|
| 824 |
-
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
| 825 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 826 |
-
output_attentions =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 827 |
output_hidden_states = (
|
| 828 |
-
output_hidden_states
|
|
|
|
|
|
|
| 829 |
)
|
| 830 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 831 |
-
return_dict =
|
|
|
|
|
|
|
| 832 |
|
| 833 |
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 834 |
-
raise ValueError(
|
|
|
|
|
|
|
| 835 |
|
| 836 |
if self.gradient_checkpointing and self.training and use_cache:
|
| 837 |
logger.warning_once(
|
|
@@ -842,35 +980,35 @@ class LlamaModel(LlamaPreTrainedModel):
|
|
| 842 |
if inputs_embeds is None:
|
| 843 |
inputs_embeds = self.embed_tokens(input_ids)
|
| 844 |
|
| 845 |
-
|
| 846 |
-
|
| 847 |
-
|
| 848 |
-
|
| 849 |
-
|
| 850 |
-
past_key_values
|
| 851 |
-
|
| 852 |
-
|
| 853 |
-
logger.warning_once(
|
| 854 |
-
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
| 855 |
-
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
| 856 |
-
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
| 857 |
-
)
|
| 858 |
|
| 859 |
if cache_position is None:
|
| 860 |
-
|
|
|
|
|
|
|
|
|
|
| 861 |
cache_position = torch.arange(
|
| 862 |
-
past_seen_tokens,
|
|
|
|
|
|
|
| 863 |
)
|
|
|
|
| 864 |
if position_ids is None:
|
| 865 |
position_ids = cache_position.unsqueeze(0)
|
| 866 |
|
| 867 |
causal_mask = self._update_causal_mask(
|
| 868 |
-
attention_mask, inputs_embeds, cache_position,
|
| 869 |
)
|
| 870 |
-
hidden_states = inputs_embeds
|
| 871 |
|
| 872 |
-
#
|
| 873 |
-
|
| 874 |
|
| 875 |
# decoder layers
|
| 876 |
all_hidden_states = () if output_hidden_states else None
|
|
@@ -891,7 +1029,6 @@ class LlamaModel(LlamaPreTrainedModel):
|
|
| 891 |
output_attentions,
|
| 892 |
use_cache,
|
| 893 |
cache_position,
|
| 894 |
-
position_embeddings,
|
| 895 |
)
|
| 896 |
else:
|
| 897 |
layer_outputs = decoder_layer(
|
|
@@ -902,8 +1039,6 @@ class LlamaModel(LlamaPreTrainedModel):
|
|
| 902 |
output_attentions=output_attentions,
|
| 903 |
use_cache=use_cache,
|
| 904 |
cache_position=cache_position,
|
| 905 |
-
position_embeddings=position_embeddings,
|
| 906 |
-
**flash_attn_kwargs,
|
| 907 |
)
|
| 908 |
|
| 909 |
hidden_states = layer_outputs[0]
|
|
@@ -920,12 +1055,15 @@ class LlamaModel(LlamaPreTrainedModel):
|
|
| 920 |
if output_hidden_states:
|
| 921 |
all_hidden_states += (hidden_states,)
|
| 922 |
|
| 923 |
-
next_cache =
|
| 924 |
-
if
|
| 925 |
-
next_cache =
|
| 926 |
-
|
| 927 |
if not return_dict:
|
| 928 |
-
return tuple(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 929 |
return BaseModelOutputWithPast(
|
| 930 |
last_hidden_state=hidden_states,
|
| 931 |
past_key_values=next_cache,
|
|
@@ -938,127 +1076,100 @@ class LlamaModel(LlamaPreTrainedModel):
|
|
| 938 |
attention_mask: torch.Tensor,
|
| 939 |
input_tensor: torch.Tensor,
|
| 940 |
cache_position: torch.Tensor,
|
| 941 |
-
|
| 942 |
-
output_attentions: bool,
|
| 943 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 944 |
if self.config._attn_implementation == "flash_attention_2":
|
| 945 |
if attention_mask is not None and 0.0 in attention_mask:
|
| 946 |
return attention_mask
|
| 947 |
return None
|
| 948 |
|
| 949 |
-
|
| 950 |
-
|
| 951 |
-
|
| 952 |
-
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 953 |
-
using_static_cache = isinstance(past_key_values, StaticCache)
|
| 954 |
-
|
| 955 |
-
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
| 956 |
-
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
| 957 |
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 958 |
attention_mask,
|
| 959 |
inputs_embeds=input_tensor,
|
| 960 |
past_key_values_length=past_seen_tokens,
|
| 961 |
-
is_training=self.training,
|
| 962 |
):
|
| 963 |
return None
|
| 964 |
|
| 965 |
dtype, device = input_tensor.dtype, input_tensor.device
|
|
|
|
| 966 |
sequence_length = input_tensor.shape[1]
|
| 967 |
-
if
|
| 968 |
-
|
| 969 |
-
|
|
|
|
|
|
|
| 970 |
target_length = (
|
| 971 |
attention_mask.shape[-1]
|
| 972 |
if isinstance(attention_mask, torch.Tensor)
|
| 973 |
else past_seen_tokens + sequence_length + 1
|
| 974 |
)
|
| 975 |
|
| 976 |
-
|
| 977 |
-
|
| 978 |
-
|
| 979 |
-
sequence_length=sequence_length,
|
| 980 |
-
target_length=target_length,
|
| 981 |
dtype=dtype,
|
| 982 |
device=device,
|
| 983 |
-
cache_position=cache_position,
|
| 984 |
-
batch_size=input_tensor.shape[0],
|
| 985 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 986 |
|
| 987 |
if (
|
| 988 |
self.config._attn_implementation == "sdpa"
|
| 989 |
and attention_mask is not None
|
| 990 |
and attention_mask.device.type == "cuda"
|
| 991 |
-
and not output_attentions
|
| 992 |
):
|
| 993 |
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 994 |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 995 |
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 996 |
-
|
| 997 |
-
|
| 998 |
-
|
| 999 |
-
return causal_mask
|
| 1000 |
-
|
| 1001 |
-
@staticmethod
|
| 1002 |
-
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 1003 |
-
attention_mask: torch.Tensor,
|
| 1004 |
-
sequence_length: int,
|
| 1005 |
-
target_length: int,
|
| 1006 |
-
dtype: torch.dtype,
|
| 1007 |
-
device: torch.device,
|
| 1008 |
-
cache_position: torch.Tensor,
|
| 1009 |
-
batch_size: int,
|
| 1010 |
-
**kwargs,
|
| 1011 |
-
):
|
| 1012 |
-
"""
|
| 1013 |
-
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 1014 |
-
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
| 1015 |
-
|
| 1016 |
-
Args:
|
| 1017 |
-
attention_mask (`torch.Tensor`):
|
| 1018 |
-
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
| 1019 |
-
`(batch_size, 1, query_length, key_value_length)`.
|
| 1020 |
-
sequence_length (`int`):
|
| 1021 |
-
The sequence length being processed.
|
| 1022 |
-
target_length (`int`):
|
| 1023 |
-
The target length: when generating with static cache, the mask should be as long as the static cache,
|
| 1024 |
-
to account for the 0 padding, the part of the cache that is not filled yet.
|
| 1025 |
-
dtype (`torch.dtype`):
|
| 1026 |
-
The dtype to use for the 4D attention mask.
|
| 1027 |
-
device (`torch.device`):
|
| 1028 |
-
The device to plcae the 4D attention mask on.
|
| 1029 |
-
cache_position (`torch.Tensor`):
|
| 1030 |
-
Indices depicting the position of the input sequence tokens in the sequence.
|
| 1031 |
-
batch_size (`torch.Tensor`):
|
| 1032 |
-
Batch size.
|
| 1033 |
-
"""
|
| 1034 |
-
if attention_mask is not None and attention_mask.dim() == 4:
|
| 1035 |
-
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 1036 |
-
causal_mask = attention_mask
|
| 1037 |
-
else:
|
| 1038 |
-
min_dtype = torch.finfo(dtype).min
|
| 1039 |
-
causal_mask = torch.full(
|
| 1040 |
-
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
| 1041 |
)
|
| 1042 |
-
if sequence_length != 1:
|
| 1043 |
-
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 1044 |
-
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
| 1045 |
-
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 1046 |
-
if attention_mask is not None:
|
| 1047 |
-
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 1048 |
-
mask_length = attention_mask.shape[-1]
|
| 1049 |
-
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
| 1050 |
-
padding_mask = padding_mask == 0
|
| 1051 |
-
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 1052 |
-
padding_mask, min_dtype
|
| 1053 |
-
)
|
| 1054 |
|
| 1055 |
return causal_mask
|
| 1056 |
|
| 1057 |
|
| 1058 |
-
class
|
| 1059 |
-
|
| 1060 |
-
|
| 1061 |
-
class LlamaForCausalLM(LlamaPreTrainedModel, GenerationMixin):
|
| 1062 |
_tied_weights_keys = ["lm_head.weight"]
|
| 1063 |
|
| 1064 |
def __init__(self, config):
|
|
@@ -1089,13 +1200,15 @@ class LlamaForCausalLM(LlamaPreTrainedModel, GenerationMixin):
|
|
| 1089 |
return self.model
|
| 1090 |
|
| 1091 |
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
| 1092 |
-
@replace_return_docstrings(
|
|
|
|
|
|
|
| 1093 |
def forward(
|
| 1094 |
self,
|
| 1095 |
input_ids: torch.LongTensor = None,
|
| 1096 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1097 |
position_ids: Optional[torch.LongTensor] = None,
|
| 1098 |
-
past_key_values: Optional[
|
| 1099 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1100 |
labels: Optional[torch.LongTensor] = None,
|
| 1101 |
use_cache: Optional[bool] = None,
|
|
@@ -1103,8 +1216,6 @@ class LlamaForCausalLM(LlamaPreTrainedModel, GenerationMixin):
|
|
| 1103 |
output_hidden_states: Optional[bool] = None,
|
| 1104 |
return_dict: Optional[bool] = None,
|
| 1105 |
cache_position: Optional[torch.LongTensor] = None,
|
| 1106 |
-
num_logits_to_keep: int = 0,
|
| 1107 |
-
**kwargs: Unpack[KwargsForCausalLM],
|
| 1108 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1109 |
r"""
|
| 1110 |
Args:
|
|
@@ -1113,11 +1224,6 @@ class LlamaForCausalLM(LlamaPreTrainedModel, GenerationMixin):
|
|
| 1113 |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1114 |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1115 |
|
| 1116 |
-
num_logits_to_keep (`int`, *optional*):
|
| 1117 |
-
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
| 1118 |
-
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
| 1119 |
-
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
| 1120 |
-
|
| 1121 |
Returns:
|
| 1122 |
|
| 1123 |
Example:
|
|
@@ -1136,11 +1242,19 @@ class LlamaForCausalLM(LlamaPreTrainedModel, GenerationMixin):
|
|
| 1136 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1137 |
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 1138 |
```"""
|
| 1139 |
-
output_attentions =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1140 |
output_hidden_states = (
|
| 1141 |
-
output_hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1142 |
)
|
| 1143 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1144 |
|
| 1145 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1146 |
outputs = self.model(
|
|
@@ -1154,21 +1268,34 @@ class LlamaForCausalLM(LlamaPreTrainedModel, GenerationMixin):
|
|
| 1154 |
output_hidden_states=output_hidden_states,
|
| 1155 |
return_dict=return_dict,
|
| 1156 |
cache_position=cache_position,
|
| 1157 |
-
**kwargs,
|
| 1158 |
)
|
| 1159 |
|
| 1160 |
hidden_states = outputs[0]
|
| 1161 |
if self.config.pretraining_tp > 1:
|
| 1162 |
-
lm_head_slices = self.lm_head.weight.split(
|
| 1163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1164 |
logits = torch.cat(logits, dim=-1)
|
| 1165 |
else:
|
| 1166 |
-
|
| 1167 |
-
|
| 1168 |
|
| 1169 |
loss = None
|
| 1170 |
if labels is not None:
|
| 1171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1172 |
|
| 1173 |
if not return_dict:
|
| 1174 |
output = (logits,) + outputs[1:]
|
|
@@ -1182,6 +1309,125 @@ class LlamaForCausalLM(LlamaPreTrainedModel, GenerationMixin):
|
|
| 1182 |
attentions=outputs.attentions,
|
| 1183 |
)
|
| 1184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1185 |
|
| 1186 |
@add_start_docstrings(
|
| 1187 |
"""
|
|
@@ -1217,10 +1463,10 @@ class LlamaForSequenceClassification(LlamaPreTrainedModel):
|
|
| 1217 |
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
| 1218 |
def forward(
|
| 1219 |
self,
|
| 1220 |
-
input_ids:
|
| 1221 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1222 |
position_ids: Optional[torch.LongTensor] = None,
|
| 1223 |
-
past_key_values: Optional[
|
| 1224 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1225 |
labels: Optional[torch.LongTensor] = None,
|
| 1226 |
use_cache: Optional[bool] = None,
|
|
@@ -1234,7 +1480,9 @@ class LlamaForSequenceClassification(LlamaPreTrainedModel):
|
|
| 1234 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1235 |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1236 |
"""
|
| 1237 |
-
return_dict =
|
|
|
|
|
|
|
| 1238 |
|
| 1239 |
transformer_outputs = self.model(
|
| 1240 |
input_ids,
|
|
@@ -1256,24 +1504,53 @@ class LlamaForSequenceClassification(LlamaPreTrainedModel):
|
|
| 1256 |
batch_size = inputs_embeds.shape[0]
|
| 1257 |
|
| 1258 |
if self.config.pad_token_id is None and batch_size != 1:
|
| 1259 |
-
raise ValueError(
|
|
|
|
|
|
|
| 1260 |
if self.config.pad_token_id is None:
|
| 1261 |
sequence_lengths = -1
|
| 1262 |
else:
|
| 1263 |
if input_ids is not None:
|
| 1264 |
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
| 1265 |
-
sequence_lengths =
|
|
|
|
|
|
|
| 1266 |
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 1267 |
sequence_lengths = sequence_lengths.to(logits.device)
|
| 1268 |
else:
|
| 1269 |
sequence_lengths = -1
|
| 1270 |
|
| 1271 |
-
pooled_logits = logits[
|
|
|
|
|
|
|
| 1272 |
|
| 1273 |
loss = None
|
| 1274 |
if labels is not None:
|
| 1275 |
-
|
| 1276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1277 |
if not return_dict:
|
| 1278 |
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1279 |
return ((loss,) + output) if loss is not None else output
|
|
@@ -1318,14 +1595,13 @@ class LlamaForQuestionAnswering(LlamaPreTrainedModel):
|
|
| 1318 |
input_ids: Optional[torch.LongTensor] = None,
|
| 1319 |
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1320 |
position_ids: Optional[torch.LongTensor] = None,
|
| 1321 |
-
past_key_values: Optional[
|
| 1322 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1323 |
start_positions: Optional[torch.LongTensor] = None,
|
| 1324 |
end_positions: Optional[torch.LongTensor] = None,
|
| 1325 |
output_attentions: Optional[bool] = None,
|
| 1326 |
output_hidden_states: Optional[bool] = None,
|
| 1327 |
return_dict: Optional[bool] = None,
|
| 1328 |
-
**kwargs,
|
| 1329 |
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
| 1330 |
r"""
|
| 1331 |
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
@@ -1337,7 +1613,9 @@ class LlamaForQuestionAnswering(LlamaPreTrainedModel):
|
|
| 1337 |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1338 |
are not taken into account for computing the loss.
|
| 1339 |
"""
|
| 1340 |
-
return_dict =
|
|
|
|
|
|
|
| 1341 |
|
| 1342 |
outputs = self.transformer(
|
| 1343 |
input_ids,
|
|
@@ -1357,106 +1635,31 @@ class LlamaForQuestionAnswering(LlamaPreTrainedModel):
|
|
| 1357 |
start_logits = start_logits.squeeze(-1).contiguous()
|
| 1358 |
end_logits = end_logits.squeeze(-1).contiguous()
|
| 1359 |
|
| 1360 |
-
|
| 1361 |
if start_positions is not None and end_positions is not None:
|
| 1362 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1363 |
|
| 1364 |
if not return_dict:
|
| 1365 |
output = (start_logits, end_logits) + outputs[2:]
|
| 1366 |
-
return ((
|
| 1367 |
|
| 1368 |
return QuestionAnsweringModelOutput(
|
| 1369 |
-
loss=
|
| 1370 |
start_logits=start_logits,
|
| 1371 |
end_logits=end_logits,
|
| 1372 |
hidden_states=outputs.hidden_states,
|
| 1373 |
attentions=outputs.attentions,
|
| 1374 |
)
|
| 1375 |
-
|
| 1376 |
-
|
| 1377 |
-
@add_start_docstrings(
|
| 1378 |
-
"""
|
| 1379 |
-
The Llama Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
| 1380 |
-
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
| 1381 |
-
""",
|
| 1382 |
-
LLAMA_START_DOCSTRING,
|
| 1383 |
-
)
|
| 1384 |
-
class LlamaForTokenClassification(LlamaPreTrainedModel):
|
| 1385 |
-
def __init__(self, config):
|
| 1386 |
-
super().__init__(config)
|
| 1387 |
-
self.num_labels = config.num_labels
|
| 1388 |
-
self.model = LlamaModel(config)
|
| 1389 |
-
if getattr(config, "classifier_dropout", None) is not None:
|
| 1390 |
-
classifier_dropout = config.classifier_dropout
|
| 1391 |
-
elif getattr(config, "hidden_dropout", None) is not None:
|
| 1392 |
-
classifier_dropout = config.hidden_dropout
|
| 1393 |
-
else:
|
| 1394 |
-
classifier_dropout = 0.1
|
| 1395 |
-
self.dropout = nn.Dropout(classifier_dropout)
|
| 1396 |
-
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
| 1397 |
-
|
| 1398 |
-
# Initialize weights and apply final processing
|
| 1399 |
-
self.post_init()
|
| 1400 |
-
|
| 1401 |
-
def get_input_embeddings(self):
|
| 1402 |
-
return self.model.embed_tokens
|
| 1403 |
-
|
| 1404 |
-
def set_input_embeddings(self, value):
|
| 1405 |
-
self.model.embed_tokens = value
|
| 1406 |
-
|
| 1407 |
-
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
| 1408 |
-
@add_code_sample_docstrings(
|
| 1409 |
-
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1410 |
-
output_type=TokenClassifierOutput,
|
| 1411 |
-
config_class=_CONFIG_FOR_DOC,
|
| 1412 |
-
)
|
| 1413 |
-
def forward(
|
| 1414 |
-
self,
|
| 1415 |
-
input_ids: Optional[torch.LongTensor] = None,
|
| 1416 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 1417 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 1418 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1419 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1420 |
-
labels: Optional[torch.LongTensor] = None,
|
| 1421 |
-
use_cache: Optional[bool] = None,
|
| 1422 |
-
output_attentions: Optional[bool] = None,
|
| 1423 |
-
output_hidden_states: Optional[bool] = None,
|
| 1424 |
-
return_dict: Optional[bool] = None,
|
| 1425 |
-
) -> Union[Tuple, TokenClassifierOutput]:
|
| 1426 |
-
r"""
|
| 1427 |
-
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1428 |
-
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1429 |
-
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1430 |
-
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1431 |
-
"""
|
| 1432 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1433 |
-
|
| 1434 |
-
outputs = self.model(
|
| 1435 |
-
input_ids,
|
| 1436 |
-
attention_mask=attention_mask,
|
| 1437 |
-
position_ids=position_ids,
|
| 1438 |
-
past_key_values=past_key_values,
|
| 1439 |
-
inputs_embeds=inputs_embeds,
|
| 1440 |
-
use_cache=use_cache,
|
| 1441 |
-
output_attentions=output_attentions,
|
| 1442 |
-
output_hidden_states=output_hidden_states,
|
| 1443 |
-
return_dict=return_dict,
|
| 1444 |
-
)
|
| 1445 |
-
sequence_output = outputs[0]
|
| 1446 |
-
sequence_output = self.dropout(sequence_output)
|
| 1447 |
-
logits = self.score(sequence_output)
|
| 1448 |
-
|
| 1449 |
-
loss = None
|
| 1450 |
-
if labels is not None:
|
| 1451 |
-
loss = self.loss_function(logits, labels, self.config)
|
| 1452 |
-
|
| 1453 |
-
if not return_dict:
|
| 1454 |
-
output = (logits,) + outputs[2:]
|
| 1455 |
-
return ((loss,) + output) if loss is not None else output
|
| 1456 |
-
|
| 1457 |
-
return TokenClassifierOutput(
|
| 1458 |
-
loss=loss,
|
| 1459 |
-
logits=logits,
|
| 1460 |
-
hidden_states=outputs.hidden_states,
|
| 1461 |
-
attentions=outputs.attentions,
|
| 1462 |
-
)
|
|
|
|
| 17 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
# See the License for the specific language governing permissions and
|
| 19 |
# limitations under the License.
|
| 20 |
+
"""PyTorch LLaMA model."""
|
| 21 |
+
|
| 22 |
import math
|
| 23 |
+
import warnings
|
| 24 |
from typing import List, Optional, Tuple, Union
|
| 25 |
|
| 26 |
import torch
|
| 27 |
import torch.nn.functional as F
|
| 28 |
import torch.utils.checkpoint
|
| 29 |
from torch import nn
|
| 30 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 31 |
|
|
|
|
| 32 |
from transformers.activations import ACT2FN
|
| 33 |
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
|
|
|
| 34 |
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
|
|
|
| 35 |
from transformers.modeling_outputs import (
|
| 36 |
BaseModelOutputWithPast,
|
| 37 |
CausalLMOutputWithPast,
|
| 38 |
QuestionAnsweringModelOutput,
|
| 39 |
SequenceClassifierOutputWithPast,
|
|
|
|
| 40 |
)
|
|
|
|
| 41 |
from transformers.modeling_utils import PreTrainedModel
|
|
|
|
| 42 |
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
| 43 |
from transformers.utils import (
|
|
|
|
|
|
|
| 44 |
add_start_docstrings,
|
| 45 |
add_start_docstrings_to_model_forward,
|
| 46 |
+
is_flash_attn_2_available,
|
| 47 |
is_flash_attn_greater_or_equal_2_10,
|
| 48 |
logging,
|
| 49 |
replace_return_docstrings,
|
| 50 |
)
|
| 51 |
from .configuration_llama import LlamaConfig
|
| 52 |
+
from transformers.models.llama.modeling_llama import LlamaRMSNorm
|
| 53 |
+
from transformers.models.llama.modeling_llama import (
|
| 54 |
+
apply_rotary_pos_emb,
|
| 55 |
+
LlamaRotaryEmbedding,
|
| 56 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
if is_flash_attn_2_available():
|
| 60 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
| 61 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
logger = logging.get_logger(__name__)
|
| 65 |
|
| 66 |
+
_CONFIG_FOR_DOC = "LlamaConfig"
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
def _get_unpad_data(attention_mask):
|
| 70 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 71 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 72 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 73 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
| 74 |
+
return (
|
| 75 |
+
indices,
|
| 76 |
+
cu_seqlens,
|
| 77 |
+
max_seqlen_in_batch,
|
| 78 |
+
)
|
| 79 |
|
|
|
|
|
|
|
| 80 |
|
| 81 |
+
ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
|
| 84 |
class LlamaMLP(nn.Module):
|
|
|
|
| 87 |
self.config = config
|
| 88 |
self.hidden_size = config.hidden_size
|
| 89 |
self.intermediate_size = config.intermediate_size
|
| 90 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 91 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 92 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 93 |
self.act_fn = ACT2FN[config.hidden_act]
|
| 94 |
|
| 95 |
def forward(self, x):
|
|
|
|
| 100 |
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
| 101 |
|
| 102 |
gate_proj = torch.cat(
|
| 103 |
+
[
|
| 104 |
+
F.linear(x, gate_proj_slices[i])
|
| 105 |
+
for i in range(self.config.pretraining_tp)
|
| 106 |
+
],
|
| 107 |
+
dim=-1,
|
| 108 |
+
)
|
| 109 |
+
up_proj = torch.cat(
|
| 110 |
+
[
|
| 111 |
+
F.linear(x, up_proj_slices[i])
|
| 112 |
+
for i in range(self.config.pretraining_tp)
|
| 113 |
+
],
|
| 114 |
+
dim=-1,
|
| 115 |
)
|
|
|
|
| 116 |
|
| 117 |
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
| 118 |
down_proj = [
|
| 119 |
+
F.linear(intermediate_states[i], down_proj_slices[i])
|
| 120 |
+
for i in range(self.config.pretraining_tp)
|
| 121 |
]
|
| 122 |
down_proj = sum(down_proj)
|
| 123 |
else:
|
|
|
|
| 134 |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 135 |
if n_rep == 1:
|
| 136 |
return hidden_states
|
| 137 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
| 138 |
+
batch, num_key_value_heads, n_rep, slen, head_dim
|
| 139 |
+
)
|
| 140 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 141 |
|
| 142 |
|
|
|
|
| 157 |
self.attention_dropout = config.attention_dropout
|
| 158 |
self.hidden_size = config.hidden_size
|
| 159 |
self.num_heads = config.num_attention_heads
|
| 160 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 161 |
self.num_key_value_heads = config.num_key_value_heads
|
| 162 |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 163 |
self.max_position_embeddings = config.max_position_embeddings
|
| 164 |
self.rope_theta = config.rope_theta
|
| 165 |
self.is_causal = True
|
| 166 |
|
| 167 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 168 |
+
raise ValueError(
|
| 169 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 170 |
+
f" and `num_heads`: {self.num_heads})."
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
self.q_proj = nn.Linear(
|
| 174 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias
|
| 175 |
+
)
|
| 176 |
+
self.k_proj = nn.Linear(
|
| 177 |
+
self.hidden_size,
|
| 178 |
+
self.num_key_value_heads * self.head_dim,
|
| 179 |
+
bias=config.attention_bias,
|
| 180 |
+
)
|
| 181 |
+
self.v_proj = nn.Linear(
|
| 182 |
+
self.hidden_size,
|
| 183 |
+
self.num_key_value_heads * self.head_dim,
|
| 184 |
+
bias=config.attention_bias,
|
| 185 |
+
)
|
| 186 |
+
self.o_proj = nn.Linear(
|
| 187 |
+
self.hidden_size, self.hidden_size, bias=config.attention_bias
|
| 188 |
+
)
|
| 189 |
+
self._init_rope()
|
| 190 |
|
| 191 |
+
def _init_rope(self):
|
| 192 |
+
if self.config.rope_scaling is None:
|
| 193 |
+
self.rotary_emb = LlamaRotaryEmbedding(self.config)
|
| 194 |
+
else:
|
| 195 |
+
scaling_type = self.config.rope_scaling["type"]
|
| 196 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
| 197 |
+
if scaling_type == "linear":
|
| 198 |
+
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
| 199 |
+
self.head_dim,
|
| 200 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 201 |
+
scaling_factor=scaling_factor,
|
| 202 |
+
base=self.rope_theta,
|
| 203 |
+
)
|
| 204 |
+
elif scaling_type == "dynamic":
|
| 205 |
+
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
| 206 |
+
self.head_dim,
|
| 207 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 208 |
+
scaling_factor=scaling_factor,
|
| 209 |
+
base=self.rope_theta,
|
| 210 |
+
)
|
| 211 |
+
else:
|
| 212 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
| 213 |
|
| 214 |
def forward(
|
| 215 |
self,
|
|
|
|
| 220 |
output_attentions: bool = False,
|
| 221 |
use_cache: bool = False,
|
| 222 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
|
| 223 |
**kwargs,
|
| 224 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 225 |
bsz, q_len, _ = hidden_states.size()
|
| 226 |
|
| 227 |
if self.config.pretraining_tp > 1:
|
| 228 |
+
key_value_slicing = (
|
| 229 |
+
self.num_key_value_heads * self.head_dim
|
| 230 |
+
) // self.config.pretraining_tp
|
| 231 |
query_slices = self.q_proj.weight.split(
|
| 232 |
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
| 233 |
)
|
| 234 |
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
| 235 |
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
| 236 |
|
| 237 |
+
query_states = [
|
| 238 |
+
F.linear(hidden_states, query_slices[i])
|
| 239 |
+
for i in range(self.config.pretraining_tp)
|
| 240 |
+
]
|
| 241 |
query_states = torch.cat(query_states, dim=-1)
|
| 242 |
|
| 243 |
+
key_states = [
|
| 244 |
+
F.linear(hidden_states, key_slices[i])
|
| 245 |
+
for i in range(self.config.pretraining_tp)
|
| 246 |
+
]
|
| 247 |
key_states = torch.cat(key_states, dim=-1)
|
| 248 |
|
| 249 |
+
value_states = [
|
| 250 |
+
F.linear(hidden_states, value_slices[i])
|
| 251 |
+
for i in range(self.config.pretraining_tp)
|
| 252 |
+
]
|
| 253 |
value_states = torch.cat(value_states, dim=-1)
|
| 254 |
|
| 255 |
else:
|
|
|
|
| 257 |
key_states = self.k_proj(hidden_states)
|
| 258 |
value_states = self.v_proj(hidden_states)
|
| 259 |
|
| 260 |
+
query_states = query_states.view(
|
| 261 |
+
bsz, q_len, self.num_heads, self.head_dim
|
| 262 |
+
).transpose(1, 2)
|
| 263 |
+
key_states = key_states.view(
|
| 264 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 265 |
+
).transpose(1, 2)
|
| 266 |
+
value_states = value_states.view(
|
| 267 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 268 |
+
).transpose(1, 2)
|
| 269 |
+
|
| 270 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
| 271 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 272 |
+
query_states, key_states = apply_rotary_pos_emb(
|
| 273 |
+
query_states, key_states, cos, sin
|
| 274 |
+
)
|
| 275 |
|
| 276 |
if past_key_value is not None:
|
| 277 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 278 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 279 |
+
key_states, value_states = past_key_value.update(
|
| 280 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
| 281 |
+
)
|
| 282 |
|
| 283 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 284 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 285 |
+
|
| 286 |
+
attn_weights = torch.matmul(
|
| 287 |
+
query_states, key_states.transpose(2, 3)
|
| 288 |
+
) / math.sqrt(self.head_dim)
|
| 289 |
|
| 290 |
if attention_mask is not None: # no matter the length, we just slice it
|
| 291 |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 292 |
attn_weights = attn_weights + causal_mask
|
| 293 |
|
| 294 |
# upcast attention to fp32
|
| 295 |
+
attn_weights = nn.functional.softmax(
|
| 296 |
+
attn_weights, dim=-1, dtype=torch.float32
|
| 297 |
+
).to(query_states.dtype)
|
| 298 |
+
attn_weights = nn.functional.dropout(
|
| 299 |
+
attn_weights, p=self.attention_dropout, training=self.training
|
| 300 |
+
)
|
| 301 |
attn_output = torch.matmul(attn_weights, value_states)
|
| 302 |
|
| 303 |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
|
|
|
| 308 |
|
| 309 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 310 |
|
| 311 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 312 |
|
| 313 |
if self.config.pretraining_tp > 1:
|
| 314 |
+
attn_output = attn_output.split(
|
| 315 |
+
self.hidden_size // self.config.pretraining_tp, dim=2
|
| 316 |
+
)
|
| 317 |
+
o_proj_slices = self.o_proj.weight.split(
|
| 318 |
+
self.hidden_size // self.config.pretraining_tp, dim=1
|
| 319 |
+
)
|
| 320 |
+
attn_output = sum(
|
| 321 |
+
[
|
| 322 |
+
F.linear(attn_output[i], o_proj_slices[i])
|
| 323 |
+
for i in range(self.config.pretraining_tp)
|
| 324 |
+
]
|
| 325 |
+
)
|
| 326 |
else:
|
| 327 |
attn_output = self.o_proj(attn_output)
|
| 328 |
|
|
|
|
| 356 |
output_attentions: bool = False,
|
| 357 |
use_cache: bool = False,
|
| 358 |
cache_position: Optional[torch.LongTensor] = None,
|
| 359 |
+
**kwargs,
|
|
|
|
| 360 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
output_attentions = False
|
| 362 |
|
| 363 |
bsz, q_len, _ = hidden_states.size()
|
|
|
|
| 369 |
# Flash attention requires the input to have the shape
|
| 370 |
# batch_size x seq_length x head_dim x hidden_dim
|
| 371 |
# therefore we just need to keep the original shape
|
| 372 |
+
query_states = query_states.view(
|
| 373 |
+
bsz, q_len, self.num_heads, self.head_dim
|
| 374 |
+
).transpose(1, 2)
|
| 375 |
+
key_states = key_states.view(
|
| 376 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 377 |
+
).transpose(1, 2)
|
| 378 |
+
value_states = value_states.view(
|
| 379 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 380 |
+
).transpose(1, 2)
|
| 381 |
+
|
| 382 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 383 |
+
query_states, key_states = apply_rotary_pos_emb(
|
| 384 |
+
query_states, key_states, cos, sin
|
| 385 |
+
)
|
| 386 |
|
| 387 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 388 |
|
| 389 |
if past_key_value is not None:
|
| 390 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 391 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 392 |
+
key_states, value_states = past_key_value.update(
|
| 393 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
| 394 |
+
)
|
| 395 |
|
| 396 |
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
| 397 |
# to be able to avoid many of these transpose/reshape/view.
|
|
|
|
| 427 |
key_states = key_states.to(target_dtype)
|
| 428 |
value_states = value_states.to(target_dtype)
|
| 429 |
|
| 430 |
+
attn_output = self._flash_attention_forward(
|
| 431 |
query_states,
|
| 432 |
key_states,
|
| 433 |
value_states,
|
| 434 |
attention_mask,
|
| 435 |
q_len,
|
|
|
|
| 436 |
dropout=dropout_rate,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
)
|
| 438 |
|
| 439 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
| 440 |
attn_output = self.o_proj(attn_output)
|
| 441 |
|
| 442 |
if not output_attentions:
|
|
|
|
| 444 |
|
| 445 |
return attn_output, attn_weights, past_key_value
|
| 446 |
|
| 447 |
+
def _flash_attention_forward(
|
| 448 |
+
self,
|
| 449 |
+
query_states,
|
| 450 |
+
key_states,
|
| 451 |
+
value_states,
|
| 452 |
+
attention_mask,
|
| 453 |
+
query_length,
|
| 454 |
+
dropout=0.0,
|
| 455 |
+
softmax_scale=None,
|
| 456 |
+
):
|
| 457 |
+
"""
|
| 458 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 459 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 460 |
+
|
| 461 |
+
Args:
|
| 462 |
+
query_states (`torch.Tensor`):
|
| 463 |
+
Input query states to be passed to Flash Attention API
|
| 464 |
+
key_states (`torch.Tensor`):
|
| 465 |
+
Input key states to be passed to Flash Attention API
|
| 466 |
+
value_states (`torch.Tensor`):
|
| 467 |
+
Input value states to be passed to Flash Attention API
|
| 468 |
+
attention_mask (`torch.Tensor`):
|
| 469 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 470 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
| 471 |
+
dropout (`float`):
|
| 472 |
+
Attention dropout
|
| 473 |
+
softmax_scale (`float`, *optional*):
|
| 474 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 475 |
+
"""
|
| 476 |
+
if not self._flash_attn_uses_top_left_mask:
|
| 477 |
+
causal = self.is_causal
|
| 478 |
+
else:
|
| 479 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
| 480 |
+
causal = self.is_causal and query_length != 1
|
| 481 |
+
|
| 482 |
+
# Contains at least one padding token in the sequence
|
| 483 |
+
if attention_mask is not None:
|
| 484 |
+
batch_size = query_states.shape[0]
|
| 485 |
+
(
|
| 486 |
+
query_states,
|
| 487 |
+
key_states,
|
| 488 |
+
value_states,
|
| 489 |
+
indices_q,
|
| 490 |
+
cu_seq_lens,
|
| 491 |
+
max_seq_lens,
|
| 492 |
+
) = self._upad_input(
|
| 493 |
+
query_states, key_states, value_states, attention_mask, query_length
|
| 494 |
+
)
|
| 495 |
+
|
| 496 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 497 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 498 |
+
|
| 499 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 500 |
+
query_states,
|
| 501 |
+
key_states,
|
| 502 |
+
value_states,
|
| 503 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 504 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 505 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 506 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 507 |
+
dropout_p=dropout,
|
| 508 |
+
softmax_scale=softmax_scale,
|
| 509 |
+
causal=causal,
|
| 510 |
+
)
|
| 511 |
+
|
| 512 |
+
attn_output = pad_input(
|
| 513 |
+
attn_output_unpad, indices_q, batch_size, query_length
|
| 514 |
+
)
|
| 515 |
+
else:
|
| 516 |
+
attn_output = flash_attn_func(
|
| 517 |
+
query_states,
|
| 518 |
+
key_states,
|
| 519 |
+
value_states,
|
| 520 |
+
dropout,
|
| 521 |
+
softmax_scale=softmax_scale,
|
| 522 |
+
causal=causal,
|
| 523 |
+
)
|
| 524 |
+
|
| 525 |
+
return attn_output
|
| 526 |
+
|
| 527 |
+
def _upad_input(
|
| 528 |
+
self, query_layer, key_layer, value_layer, attention_mask, query_length
|
| 529 |
+
):
|
| 530 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 531 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
| 532 |
+
|
| 533 |
+
key_layer = index_first_axis(
|
| 534 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
| 535 |
+
indices_k,
|
| 536 |
+
)
|
| 537 |
+
value_layer = index_first_axis(
|
| 538 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
| 539 |
+
indices_k,
|
| 540 |
+
)
|
| 541 |
+
if query_length == kv_seq_len:
|
| 542 |
+
query_layer = index_first_axis(
|
| 543 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
|
| 544 |
+
indices_k,
|
| 545 |
+
)
|
| 546 |
+
cu_seqlens_q = cu_seqlens_k
|
| 547 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 548 |
+
indices_q = indices_k
|
| 549 |
+
elif query_length == 1:
|
| 550 |
+
max_seqlen_in_batch_q = 1
|
| 551 |
+
cu_seqlens_q = torch.arange(
|
| 552 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 553 |
+
) # There is a memcpy here, that is very bad.
|
| 554 |
+
indices_q = cu_seqlens_q[:-1]
|
| 555 |
+
query_layer = query_layer.squeeze(1)
|
| 556 |
+
else:
|
| 557 |
+
# The -q_len: slice assumes left padding.
|
| 558 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 559 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
| 560 |
+
query_layer, attention_mask
|
| 561 |
+
)
|
| 562 |
+
|
| 563 |
+
return (
|
| 564 |
+
query_layer,
|
| 565 |
+
key_layer,
|
| 566 |
+
value_layer,
|
| 567 |
+
indices_q,
|
| 568 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 569 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 570 |
+
)
|
| 571 |
+
|
| 572 |
|
| 573 |
class LlamaSdpaAttention(LlamaAttention):
|
| 574 |
"""
|
|
|
|
| 587 |
output_attentions: bool = False,
|
| 588 |
use_cache: bool = False,
|
| 589 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
|
|
|
|
| 590 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 591 |
if output_attentions:
|
| 592 |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
|
|
|
| 602 |
output_attentions=output_attentions,
|
| 603 |
use_cache=use_cache,
|
| 604 |
cache_position=cache_position,
|
|
|
|
| 605 |
)
|
| 606 |
|
| 607 |
bsz, q_len, _ = hidden_states.size()
|
|
|
|
| 610 |
key_states = self.k_proj(hidden_states)
|
| 611 |
value_states = self.v_proj(hidden_states)
|
| 612 |
|
| 613 |
+
query_states = query_states.view(
|
| 614 |
+
bsz, q_len, self.num_heads, self.head_dim
|
| 615 |
+
).transpose(1, 2)
|
| 616 |
+
key_states = key_states.view(
|
| 617 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 618 |
+
).transpose(1, 2)
|
| 619 |
+
value_states = value_states.view(
|
| 620 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 621 |
+
).transpose(1, 2)
|
| 622 |
+
|
| 623 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 624 |
+
query_states, key_states = apply_rotary_pos_emb(
|
| 625 |
+
query_states, key_states, cos, sin
|
| 626 |
+
)
|
| 627 |
|
| 628 |
+
# In case static cache is used, it is an instance attribute.
|
| 629 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 630 |
|
| 631 |
if past_key_value is not None:
|
| 632 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 633 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 634 |
+
key_states, value_states = past_key_value.update(
|
| 635 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
| 636 |
+
)
|
| 637 |
|
| 638 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 639 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
| 649 |
key_states = key_states.contiguous()
|
| 650 |
value_states = value_states.contiguous()
|
| 651 |
|
| 652 |
+
# In case we are not compiling, we may set `causal_mask` to None, which is required to dispatch to SDPA's Flash Attention 2 backend, rather
|
| 653 |
+
# relying on the `is_causal` argument.
|
|
|
|
|
|
|
| 654 |
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 655 |
query_states,
|
| 656 |
key_states,
|
| 657 |
value_states,
|
| 658 |
attn_mask=causal_mask,
|
| 659 |
dropout_p=self.attention_dropout if self.training else 0.0,
|
| 660 |
+
is_causal=causal_mask is None and q_len > 1,
|
| 661 |
)
|
| 662 |
|
| 663 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 664 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
| 665 |
|
| 666 |
attn_output = self.o_proj(attn_output)
|
| 667 |
|
|
|
|
| 680 |
super().__init__()
|
| 681 |
self.hidden_size = config.hidden_size
|
| 682 |
|
| 683 |
+
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](
|
| 684 |
+
config=config, layer_idx=layer_idx
|
| 685 |
+
)
|
| 686 |
|
| 687 |
self.mlp = LlamaMLP(config)
|
| 688 |
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 689 |
+
self.post_attention_layernorm = LlamaRMSNorm(
|
| 690 |
+
config.hidden_size, eps=config.rms_norm_eps
|
| 691 |
+
)
|
| 692 |
|
| 693 |
def forward(
|
| 694 |
self,
|
| 695 |
hidden_states: torch.Tensor,
|
| 696 |
attention_mask: Optional[torch.Tensor] = None,
|
| 697 |
position_ids: Optional[torch.LongTensor] = None,
|
| 698 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 699 |
output_attentions: Optional[bool] = False,
|
| 700 |
use_cache: Optional[bool] = False,
|
| 701 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
|
| 702 |
**kwargs,
|
| 703 |
+
) -> Tuple[
|
| 704 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
| 705 |
+
]:
|
| 706 |
"""
|
| 707 |
Args:
|
| 708 |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
|
|
| 716 |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 717 |
(see `past_key_values`).
|
| 718 |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 719 |
"""
|
| 720 |
+
if "padding_mask" in kwargs:
|
| 721 |
+
warnings.warn(
|
| 722 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
| 723 |
+
)
|
| 724 |
+
|
| 725 |
residual = hidden_states
|
| 726 |
|
| 727 |
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
| 735 |
output_attentions=output_attentions,
|
| 736 |
use_cache=use_cache,
|
| 737 |
cache_position=cache_position,
|
|
|
|
| 738 |
**kwargs,
|
| 739 |
)
|
| 740 |
hidden_states = residual + hidden_states
|
|
|
|
| 786 |
_supports_flash_attn_2 = True
|
| 787 |
_supports_sdpa = True
|
| 788 |
_supports_cache_class = True
|
|
|
|
|
|
|
| 789 |
|
| 790 |
def _init_weights(self, module):
|
| 791 |
std = self.config.initializer_range
|
|
|
|
| 798 |
if module.padding_idx is not None:
|
| 799 |
module.weight.data[module.padding_idx].zero_()
|
| 800 |
|
| 801 |
+
def _setup_cache(
|
| 802 |
+
self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None
|
| 803 |
+
):
|
| 804 |
+
if (
|
| 805 |
+
self.config._attn_implementation == "flash_attention_2"
|
| 806 |
+
and cache_cls == StaticCache
|
| 807 |
+
):
|
| 808 |
+
raise ValueError(
|
| 809 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
| 810 |
+
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
| 811 |
+
)
|
| 812 |
+
|
| 813 |
+
for layer in self.model.layers:
|
| 814 |
+
device = layer.input_layernorm.weight.device
|
| 815 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
| 816 |
+
dtype = self.config._pre_quantization_dtype
|
| 817 |
+
else:
|
| 818 |
+
dtype = layer.self_attn.o_proj.weight.dtype
|
| 819 |
+
layer.self_attn.past_key_value = cache_cls(
|
| 820 |
+
self.config, max_batch_size, max_cache_len, device=device, dtype=dtype
|
| 821 |
+
)
|
| 822 |
+
|
| 823 |
+
def _reset_cache(self):
|
| 824 |
+
for layer in self.model.layers:
|
| 825 |
+
layer.self_attn.past_key_value = None
|
| 826 |
+
|
| 827 |
|
| 828 |
LLAMA_INPUTS_DOCSTRING = r"""
|
| 829 |
Args:
|
|
|
|
| 866 |
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 867 |
|
| 868 |
Two formats are allowed:
|
| 869 |
+
- a [`~cache_utils.Cache`] instance;
|
|
|
|
| 870 |
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 871 |
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
| 872 |
cache format.
|
|
|
|
| 916 |
self.padding_idx = config.pad_token_id
|
| 917 |
self.vocab_size = config.vocab_size
|
| 918 |
|
| 919 |
+
self.embed_tokens = nn.Embedding(
|
| 920 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
| 921 |
+
)
|
| 922 |
self.layers = nn.ModuleList(
|
| 923 |
+
[
|
| 924 |
+
LlamaDecoderLayer(config, layer_idx)
|
| 925 |
+
for layer_idx in range(config.num_hidden_layers)
|
| 926 |
+
]
|
| 927 |
)
|
| 928 |
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
| 929 |
self.gradient_checkpointing = False
|
| 930 |
|
| 931 |
# Initialize weights and apply final processing
|
|
|
|
| 943 |
input_ids: torch.LongTensor = None,
|
| 944 |
attention_mask: Optional[torch.Tensor] = None,
|
| 945 |
position_ids: Optional[torch.LongTensor] = None,
|
| 946 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 947 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 948 |
use_cache: Optional[bool] = None,
|
| 949 |
output_attentions: Optional[bool] = None,
|
| 950 |
output_hidden_states: Optional[bool] = None,
|
| 951 |
return_dict: Optional[bool] = None,
|
| 952 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
|
| 953 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 954 |
+
output_attentions = (
|
| 955 |
+
output_attentions
|
| 956 |
+
if output_attentions is not None
|
| 957 |
+
else self.config.output_attentions
|
| 958 |
+
)
|
| 959 |
output_hidden_states = (
|
| 960 |
+
output_hidden_states
|
| 961 |
+
if output_hidden_states is not None
|
| 962 |
+
else self.config.output_hidden_states
|
| 963 |
)
|
| 964 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 965 |
+
return_dict = (
|
| 966 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 967 |
+
)
|
| 968 |
|
| 969 |
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 970 |
+
raise ValueError(
|
| 971 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
| 972 |
+
)
|
| 973 |
|
| 974 |
if self.gradient_checkpointing and self.training and use_cache:
|
| 975 |
logger.warning_once(
|
|
|
|
| 980 |
if inputs_embeds is None:
|
| 981 |
inputs_embeds = self.embed_tokens(input_ids)
|
| 982 |
|
| 983 |
+
past_seen_tokens = 0
|
| 984 |
+
if use_cache: # kept for BC (cache positions)
|
| 985 |
+
if past_key_values is not None and not isinstance(
|
| 986 |
+
past_key_values, StaticCache
|
| 987 |
+
):
|
| 988 |
+
if not isinstance(past_key_values, DynamicCache):
|
| 989 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 990 |
+
past_seen_tokens = past_key_values.get_seq_length()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 991 |
|
| 992 |
if cache_position is None:
|
| 993 |
+
if isinstance(past_key_values, StaticCache):
|
| 994 |
+
raise ValueError(
|
| 995 |
+
"cache_position is a required argument when using StaticCache."
|
| 996 |
+
)
|
| 997 |
cache_position = torch.arange(
|
| 998 |
+
past_seen_tokens,
|
| 999 |
+
past_seen_tokens + inputs_embeds.shape[1],
|
| 1000 |
+
device=inputs_embeds.device,
|
| 1001 |
)
|
| 1002 |
+
|
| 1003 |
if position_ids is None:
|
| 1004 |
position_ids = cache_position.unsqueeze(0)
|
| 1005 |
|
| 1006 |
causal_mask = self._update_causal_mask(
|
| 1007 |
+
attention_mask, inputs_embeds, cache_position, past_seen_tokens
|
| 1008 |
)
|
|
|
|
| 1009 |
|
| 1010 |
+
# embed positions
|
| 1011 |
+
hidden_states = inputs_embeds
|
| 1012 |
|
| 1013 |
# decoder layers
|
| 1014 |
all_hidden_states = () if output_hidden_states else None
|
|
|
|
| 1029 |
output_attentions,
|
| 1030 |
use_cache,
|
| 1031 |
cache_position,
|
|
|
|
| 1032 |
)
|
| 1033 |
else:
|
| 1034 |
layer_outputs = decoder_layer(
|
|
|
|
| 1039 |
output_attentions=output_attentions,
|
| 1040 |
use_cache=use_cache,
|
| 1041 |
cache_position=cache_position,
|
|
|
|
|
|
|
| 1042 |
)
|
| 1043 |
|
| 1044 |
hidden_states = layer_outputs[0]
|
|
|
|
| 1055 |
if output_hidden_states:
|
| 1056 |
all_hidden_states += (hidden_states,)
|
| 1057 |
|
| 1058 |
+
next_cache = None
|
| 1059 |
+
if use_cache:
|
| 1060 |
+
next_cache = next_decoder_cache
|
|
|
|
| 1061 |
if not return_dict:
|
| 1062 |
+
return tuple(
|
| 1063 |
+
v
|
| 1064 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
| 1065 |
+
if v is not None
|
| 1066 |
+
)
|
| 1067 |
return BaseModelOutputWithPast(
|
| 1068 |
last_hidden_state=hidden_states,
|
| 1069 |
past_key_values=next_cache,
|
|
|
|
| 1076 |
attention_mask: torch.Tensor,
|
| 1077 |
input_tensor: torch.Tensor,
|
| 1078 |
cache_position: torch.Tensor,
|
| 1079 |
+
past_seen_tokens: int,
|
|
|
|
| 1080 |
):
|
| 1081 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
| 1082 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
| 1083 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
| 1084 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
| 1085 |
+
|
| 1086 |
if self.config._attn_implementation == "flash_attention_2":
|
| 1087 |
if attention_mask is not None and 0.0 in attention_mask:
|
| 1088 |
return attention_mask
|
| 1089 |
return None
|
| 1090 |
|
| 1091 |
+
if self.config._attn_implementation == "sdpa":
|
| 1092 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument,
|
| 1093 |
+
# in order to dispatch on Flash Attention 2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1094 |
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 1095 |
attention_mask,
|
| 1096 |
inputs_embeds=input_tensor,
|
| 1097 |
past_key_values_length=past_seen_tokens,
|
|
|
|
| 1098 |
):
|
| 1099 |
return None
|
| 1100 |
|
| 1101 |
dtype, device = input_tensor.dtype, input_tensor.device
|
| 1102 |
+
min_dtype = torch.finfo(dtype).min
|
| 1103 |
sequence_length = input_tensor.shape[1]
|
| 1104 |
+
if hasattr(
|
| 1105 |
+
getattr(self.layers[0], "self_attn", {}), "past_key_value"
|
| 1106 |
+
): # static cache
|
| 1107 |
+
target_length = self.config.max_position_embeddings
|
| 1108 |
+
else: # dynamic cache
|
| 1109 |
target_length = (
|
| 1110 |
attention_mask.shape[-1]
|
| 1111 |
if isinstance(attention_mask, torch.Tensor)
|
| 1112 |
else past_seen_tokens + sequence_length + 1
|
| 1113 |
)
|
| 1114 |
|
| 1115 |
+
causal_mask = torch.full(
|
| 1116 |
+
(sequence_length, target_length),
|
| 1117 |
+
fill_value=min_dtype,
|
|
|
|
|
|
|
| 1118 |
dtype=dtype,
|
| 1119 |
device=device,
|
|
|
|
|
|
|
| 1120 |
)
|
| 1121 |
+
if sequence_length != 1:
|
| 1122 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 1123 |
+
causal_mask *= torch.arange(
|
| 1124 |
+
target_length, device=device
|
| 1125 |
+
) > cache_position.reshape(-1, 1)
|
| 1126 |
+
causal_mask = causal_mask[None, None, :, :].expand(
|
| 1127 |
+
input_tensor.shape[0], 1, -1, -1
|
| 1128 |
+
)
|
| 1129 |
+
if attention_mask is not None:
|
| 1130 |
+
causal_mask = (
|
| 1131 |
+
causal_mask.clone()
|
| 1132 |
+
) # copy to contiguous memory for in-place edit
|
| 1133 |
+
if attention_mask.dim() == 2:
|
| 1134 |
+
mask_length = attention_mask.shape[-1]
|
| 1135 |
+
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[
|
| 1136 |
+
:, None, None, :
|
| 1137 |
+
].eq(0.0)
|
| 1138 |
+
causal_mask[..., :mask_length] = causal_mask[
|
| 1139 |
+
..., :mask_length
|
| 1140 |
+
].masked_fill(padding_mask, min_dtype)
|
| 1141 |
+
elif attention_mask.dim() == 4:
|
| 1142 |
+
# backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
|
| 1143 |
+
# cache. In that case, the 4D attention mask attends to the newest tokens only.
|
| 1144 |
+
if attention_mask.shape[-2] < cache_position[0] + sequence_length:
|
| 1145 |
+
offset = cache_position[0]
|
| 1146 |
+
else:
|
| 1147 |
+
offset = 0
|
| 1148 |
+
mask_shape = attention_mask.shape
|
| 1149 |
+
mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
|
| 1150 |
+
causal_mask[
|
| 1151 |
+
: mask_shape[0],
|
| 1152 |
+
: mask_shape[1],
|
| 1153 |
+
offset : mask_shape[2] + offset,
|
| 1154 |
+
: mask_shape[3],
|
| 1155 |
+
] = mask_slice
|
| 1156 |
|
| 1157 |
if (
|
| 1158 |
self.config._attn_implementation == "sdpa"
|
| 1159 |
and attention_mask is not None
|
| 1160 |
and attention_mask.device.type == "cuda"
|
|
|
|
| 1161 |
):
|
| 1162 |
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 1163 |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 1164 |
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 1165 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(
|
| 1166 |
+
causal_mask, min_dtype
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1167 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1168 |
|
| 1169 |
return causal_mask
|
| 1170 |
|
| 1171 |
|
| 1172 |
+
class LlamaForCausalLM(LlamaPreTrainedModel):
|
|
|
|
|
|
|
|
|
|
| 1173 |
_tied_weights_keys = ["lm_head.weight"]
|
| 1174 |
|
| 1175 |
def __init__(self, config):
|
|
|
|
| 1200 |
return self.model
|
| 1201 |
|
| 1202 |
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
| 1203 |
+
@replace_return_docstrings(
|
| 1204 |
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
| 1205 |
+
)
|
| 1206 |
def forward(
|
| 1207 |
self,
|
| 1208 |
input_ids: torch.LongTensor = None,
|
| 1209 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1210 |
position_ids: Optional[torch.LongTensor] = None,
|
| 1211 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1212 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1213 |
labels: Optional[torch.LongTensor] = None,
|
| 1214 |
use_cache: Optional[bool] = None,
|
|
|
|
| 1216 |
output_hidden_states: Optional[bool] = None,
|
| 1217 |
return_dict: Optional[bool] = None,
|
| 1218 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
|
|
|
|
| 1219 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1220 |
r"""
|
| 1221 |
Args:
|
|
|
|
| 1224 |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1225 |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1227 |
Returns:
|
| 1228 |
|
| 1229 |
Example:
|
|
|
|
| 1242 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1243 |
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 1244 |
```"""
|
| 1245 |
+
output_attentions = (
|
| 1246 |
+
output_attentions
|
| 1247 |
+
if output_attentions is not None
|
| 1248 |
+
else self.config.output_attentions
|
| 1249 |
+
)
|
| 1250 |
output_hidden_states = (
|
| 1251 |
+
output_hidden_states
|
| 1252 |
+
if output_hidden_states is not None
|
| 1253 |
+
else self.config.output_hidden_states
|
| 1254 |
+
)
|
| 1255 |
+
return_dict = (
|
| 1256 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1257 |
)
|
|
|
|
| 1258 |
|
| 1259 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1260 |
outputs = self.model(
|
|
|
|
| 1268 |
output_hidden_states=output_hidden_states,
|
| 1269 |
return_dict=return_dict,
|
| 1270 |
cache_position=cache_position,
|
|
|
|
| 1271 |
)
|
| 1272 |
|
| 1273 |
hidden_states = outputs[0]
|
| 1274 |
if self.config.pretraining_tp > 1:
|
| 1275 |
+
lm_head_slices = self.lm_head.weight.split(
|
| 1276 |
+
self.vocab_size // self.config.pretraining_tp, dim=0
|
| 1277 |
+
)
|
| 1278 |
+
logits = [
|
| 1279 |
+
F.linear(hidden_states, lm_head_slices[i])
|
| 1280 |
+
for i in range(self.config.pretraining_tp)
|
| 1281 |
+
]
|
| 1282 |
logits = torch.cat(logits, dim=-1)
|
| 1283 |
else:
|
| 1284 |
+
logits = self.lm_head(hidden_states)
|
| 1285 |
+
logits = logits.float()
|
| 1286 |
|
| 1287 |
loss = None
|
| 1288 |
if labels is not None:
|
| 1289 |
+
# Shift so that tokens < n predict n
|
| 1290 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 1291 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1292 |
+
# Flatten the tokens
|
| 1293 |
+
loss_fct = CrossEntropyLoss()
|
| 1294 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 1295 |
+
shift_labels = shift_labels.view(-1)
|
| 1296 |
+
# Enable model parallelism
|
| 1297 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 1298 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 1299 |
|
| 1300 |
if not return_dict:
|
| 1301 |
output = (logits,) + outputs[1:]
|
|
|
|
| 1309 |
attentions=outputs.attentions,
|
| 1310 |
)
|
| 1311 |
|
| 1312 |
+
def prepare_inputs_for_generation(
|
| 1313 |
+
self,
|
| 1314 |
+
input_ids,
|
| 1315 |
+
past_key_values=None,
|
| 1316 |
+
attention_mask=None,
|
| 1317 |
+
inputs_embeds=None,
|
| 1318 |
+
cache_position=None,
|
| 1319 |
+
**kwargs,
|
| 1320 |
+
):
|
| 1321 |
+
# With static cache, the `past_key_values` is None
|
| 1322 |
+
# TODO joao: standardize interface for the different Cache classes and remove of this if
|
| 1323 |
+
has_static_cache = False
|
| 1324 |
+
if past_key_values is None:
|
| 1325 |
+
past_key_values = getattr(
|
| 1326 |
+
getattr(self.model.layers[0], "self_attn", {}), "past_key_value", None
|
| 1327 |
+
)
|
| 1328 |
+
has_static_cache = past_key_values is not None
|
| 1329 |
+
|
| 1330 |
+
past_length = 0
|
| 1331 |
+
if past_key_values is not None:
|
| 1332 |
+
if isinstance(past_key_values, Cache):
|
| 1333 |
+
past_length = (
|
| 1334 |
+
cache_position[0]
|
| 1335 |
+
if cache_position is not None
|
| 1336 |
+
else past_key_values.get_seq_length()
|
| 1337 |
+
)
|
| 1338 |
+
max_cache_length = (
|
| 1339 |
+
torch.tensor(
|
| 1340 |
+
past_key_values.get_max_cache_shape(), device=input_ids.device
|
| 1341 |
+
)
|
| 1342 |
+
if past_key_values.get_max_cache_shape() is not None
|
| 1343 |
+
else None
|
| 1344 |
+
)
|
| 1345 |
+
cache_length = (
|
| 1346 |
+
past_length
|
| 1347 |
+
if max_cache_length is None
|
| 1348 |
+
else torch.min(max_cache_length, past_length)
|
| 1349 |
+
)
|
| 1350 |
+
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
|
| 1351 |
+
else:
|
| 1352 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
| 1353 |
+
max_cache_length = None
|
| 1354 |
+
|
| 1355 |
+
# Keep only the unprocessed tokens:
|
| 1356 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
| 1357 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
| 1358 |
+
# input)
|
| 1359 |
+
if (
|
| 1360 |
+
attention_mask is not None
|
| 1361 |
+
and attention_mask.shape[1] > input_ids.shape[1]
|
| 1362 |
+
):
|
| 1363 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
| 1364 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
| 1365 |
+
# input_ids based on the past_length.
|
| 1366 |
+
elif past_length < input_ids.shape[1]:
|
| 1367 |
+
input_ids = input_ids[:, past_length:]
|
| 1368 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
| 1369 |
+
|
| 1370 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
| 1371 |
+
if (
|
| 1372 |
+
max_cache_length is not None
|
| 1373 |
+
and attention_mask is not None
|
| 1374 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
| 1375 |
+
):
|
| 1376 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
| 1377 |
+
|
| 1378 |
+
position_ids = kwargs.get("position_ids", None)
|
| 1379 |
+
if attention_mask is not None and position_ids is None:
|
| 1380 |
+
# create position_ids on the fly for batch generation
|
| 1381 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1382 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1383 |
+
if past_key_values:
|
| 1384 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 1385 |
+
|
| 1386 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1387 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 1388 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 1389 |
+
else:
|
| 1390 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
| 1391 |
+
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
| 1392 |
+
# TODO: use `next_tokens` directly instead.
|
| 1393 |
+
model_inputs = {"input_ids": input_ids.contiguous()}
|
| 1394 |
+
|
| 1395 |
+
input_length = (
|
| 1396 |
+
position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
| 1397 |
+
)
|
| 1398 |
+
if cache_position is None:
|
| 1399 |
+
cache_position = torch.arange(
|
| 1400 |
+
past_length, past_length + input_length, device=input_ids.device
|
| 1401 |
+
)
|
| 1402 |
+
else:
|
| 1403 |
+
cache_position = cache_position[-input_length:]
|
| 1404 |
+
|
| 1405 |
+
if has_static_cache:
|
| 1406 |
+
past_key_values = None
|
| 1407 |
+
|
| 1408 |
+
model_inputs.update(
|
| 1409 |
+
{
|
| 1410 |
+
"position_ids": position_ids,
|
| 1411 |
+
"cache_position": cache_position,
|
| 1412 |
+
"past_key_values": past_key_values,
|
| 1413 |
+
"use_cache": kwargs.get("use_cache"),
|
| 1414 |
+
"attention_mask": attention_mask,
|
| 1415 |
+
}
|
| 1416 |
+
)
|
| 1417 |
+
return model_inputs
|
| 1418 |
+
|
| 1419 |
+
@staticmethod
|
| 1420 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 1421 |
+
reordered_past = ()
|
| 1422 |
+
for layer_past in past_key_values:
|
| 1423 |
+
reordered_past += (
|
| 1424 |
+
tuple(
|
| 1425 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
| 1426 |
+
for past_state in layer_past
|
| 1427 |
+
),
|
| 1428 |
+
)
|
| 1429 |
+
return reordered_past
|
| 1430 |
+
|
| 1431 |
|
| 1432 |
@add_start_docstrings(
|
| 1433 |
"""
|
|
|
|
| 1463 |
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
| 1464 |
def forward(
|
| 1465 |
self,
|
| 1466 |
+
input_ids: torch.LongTensor = None,
|
| 1467 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1468 |
position_ids: Optional[torch.LongTensor] = None,
|
| 1469 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1470 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1471 |
labels: Optional[torch.LongTensor] = None,
|
| 1472 |
use_cache: Optional[bool] = None,
|
|
|
|
| 1480 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1481 |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1482 |
"""
|
| 1483 |
+
return_dict = (
|
| 1484 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1485 |
+
)
|
| 1486 |
|
| 1487 |
transformer_outputs = self.model(
|
| 1488 |
input_ids,
|
|
|
|
| 1504 |
batch_size = inputs_embeds.shape[0]
|
| 1505 |
|
| 1506 |
if self.config.pad_token_id is None and batch_size != 1:
|
| 1507 |
+
raise ValueError(
|
| 1508 |
+
"Cannot handle batch sizes > 1 if no padding token is defined."
|
| 1509 |
+
)
|
| 1510 |
if self.config.pad_token_id is None:
|
| 1511 |
sequence_lengths = -1
|
| 1512 |
else:
|
| 1513 |
if input_ids is not None:
|
| 1514 |
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
| 1515 |
+
sequence_lengths = (
|
| 1516 |
+
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
| 1517 |
+
)
|
| 1518 |
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 1519 |
sequence_lengths = sequence_lengths.to(logits.device)
|
| 1520 |
else:
|
| 1521 |
sequence_lengths = -1
|
| 1522 |
|
| 1523 |
+
pooled_logits = logits[
|
| 1524 |
+
torch.arange(batch_size, device=logits.device), sequence_lengths
|
| 1525 |
+
]
|
| 1526 |
|
| 1527 |
loss = None
|
| 1528 |
if labels is not None:
|
| 1529 |
+
labels = labels.to(logits.device)
|
| 1530 |
+
if self.config.problem_type is None:
|
| 1531 |
+
if self.num_labels == 1:
|
| 1532 |
+
self.config.problem_type = "regression"
|
| 1533 |
+
elif self.num_labels > 1 and (
|
| 1534 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
| 1535 |
+
):
|
| 1536 |
+
self.config.problem_type = "single_label_classification"
|
| 1537 |
+
else:
|
| 1538 |
+
self.config.problem_type = "multi_label_classification"
|
| 1539 |
+
|
| 1540 |
+
if self.config.problem_type == "regression":
|
| 1541 |
+
loss_fct = MSELoss()
|
| 1542 |
+
if self.num_labels == 1:
|
| 1543 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1544 |
+
else:
|
| 1545 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1546 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1547 |
+
loss_fct = CrossEntropyLoss()
|
| 1548 |
+
loss = loss_fct(
|
| 1549 |
+
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
| 1550 |
+
)
|
| 1551 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1552 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1553 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1554 |
if not return_dict:
|
| 1555 |
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1556 |
return ((loss,) + output) if loss is not None else output
|
|
|
|
| 1595 |
input_ids: Optional[torch.LongTensor] = None,
|
| 1596 |
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1597 |
position_ids: Optional[torch.LongTensor] = None,
|
| 1598 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1599 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1600 |
start_positions: Optional[torch.LongTensor] = None,
|
| 1601 |
end_positions: Optional[torch.LongTensor] = None,
|
| 1602 |
output_attentions: Optional[bool] = None,
|
| 1603 |
output_hidden_states: Optional[bool] = None,
|
| 1604 |
return_dict: Optional[bool] = None,
|
|
|
|
| 1605 |
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
| 1606 |
r"""
|
| 1607 |
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
|
|
| 1613 |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1614 |
are not taken into account for computing the loss.
|
| 1615 |
"""
|
| 1616 |
+
return_dict = (
|
| 1617 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1618 |
+
)
|
| 1619 |
|
| 1620 |
outputs = self.transformer(
|
| 1621 |
input_ids,
|
|
|
|
| 1635 |
start_logits = start_logits.squeeze(-1).contiguous()
|
| 1636 |
end_logits = end_logits.squeeze(-1).contiguous()
|
| 1637 |
|
| 1638 |
+
total_loss = None
|
| 1639 |
if start_positions is not None and end_positions is not None:
|
| 1640 |
+
# If we are on multi-GPU, split add a dimension
|
| 1641 |
+
if len(start_positions.size()) > 1:
|
| 1642 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
| 1643 |
+
if len(end_positions.size()) > 1:
|
| 1644 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
| 1645 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
| 1646 |
+
ignored_index = start_logits.size(1)
|
| 1647 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
| 1648 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
| 1649 |
+
|
| 1650 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
| 1651 |
+
start_loss = loss_fct(start_logits, start_positions)
|
| 1652 |
+
end_loss = loss_fct(end_logits, end_positions)
|
| 1653 |
+
total_loss = (start_loss + end_loss) / 2
|
| 1654 |
|
| 1655 |
if not return_dict:
|
| 1656 |
output = (start_logits, end_logits) + outputs[2:]
|
| 1657 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
| 1658 |
|
| 1659 |
return QuestionAnsweringModelOutput(
|
| 1660 |
+
loss=total_loss,
|
| 1661 |
start_logits=start_logits,
|
| 1662 |
end_logits=end_logits,
|
| 1663 |
hidden_states=outputs.hidden_states,
|
| 1664 |
attentions=outputs.attentions,
|
| 1665 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|