Upload folder using huggingface_hub
Browse files- .idea/.gitignore +3 -0
- .idea/PPO.iml +8 -0
- .idea/inspectionProfiles/Project_Default.xml +12 -0
- .idea/inspectionProfiles/profiles_settings.xml +6 -0
- .idea/misc.xml +4 -0
- .idea/modules.xml +8 -0
- .idea/workspace.xml +61 -0
- README.md +1 -1
- hyperparameters.json +1 -1
- main.py +265 -0
- model.pt +1 -1
- requirements.txt +1 -0
- results.json +1 -1
.idea/.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Default ignored files
|
| 2 |
+
/shelf/
|
| 3 |
+
/workspace.xml
|
.idea/PPO.iml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
| 2 |
+
<module type="PYTHON_MODULE" version="4">
|
| 3 |
+
<component name="NewModuleRootManager">
|
| 4 |
+
<content url="file://$MODULE_DIR$" />
|
| 5 |
+
<orderEntry type="inheritedJdk" />
|
| 6 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
| 7 |
+
</component>
|
| 8 |
+
</module>
|
.idea/inspectionProfiles/Project_Default.xml
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<component name="InspectionProjectProfileManager">
|
| 2 |
+
<profile version="1.0">
|
| 3 |
+
<option name="myName" value="Project Default" />
|
| 4 |
+
<inspection_tool class="PyPep8NamingInspection" enabled="true" level="WEAK WARNING" enabled_by_default="true">
|
| 5 |
+
<option name="ignoredErrors">
|
| 6 |
+
<list>
|
| 7 |
+
<option value="N802" />
|
| 8 |
+
</list>
|
| 9 |
+
</option>
|
| 10 |
+
</inspection_tool>
|
| 11 |
+
</profile>
|
| 12 |
+
</component>
|
.idea/inspectionProfiles/profiles_settings.xml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<component name="InspectionProjectProfileManager">
|
| 2 |
+
<settings>
|
| 3 |
+
<option name="USE_PROJECT_PROFILE" value="false" />
|
| 4 |
+
<version value="1.0" />
|
| 5 |
+
</settings>
|
| 6 |
+
</component>
|
.idea/misc.xml
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
| 2 |
+
<project version="4">
|
| 3 |
+
<component name="ProjectRootManager" version="2" project-jdk-name="py39" project-jdk-type="Python SDK" />
|
| 4 |
+
</project>
|
.idea/modules.xml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
| 2 |
+
<project version="4">
|
| 3 |
+
<component name="ProjectModuleManager">
|
| 4 |
+
<modules>
|
| 5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/PPO.iml" filepath="$PROJECT_DIR$/.idea/PPO.iml" />
|
| 6 |
+
</modules>
|
| 7 |
+
</component>
|
| 8 |
+
</project>
|
.idea/workspace.xml
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
| 2 |
+
<project version="4">
|
| 3 |
+
<component name="AutoImportSettings">
|
| 4 |
+
<option name="autoReloadType" value="SELECTIVE" />
|
| 5 |
+
</component>
|
| 6 |
+
<component name="ChangeListManager">
|
| 7 |
+
<list default="true" id="82c11718-8476-4ed5-8f5a-34544b12ac29" name="Changes" comment="" />
|
| 8 |
+
<option name="SHOW_DIALOG" value="false" />
|
| 9 |
+
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
| 10 |
+
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
|
| 11 |
+
<option name="LAST_RESOLUTION" value="IGNORE" />
|
| 12 |
+
</component>
|
| 13 |
+
<component name="MarkdownSettingsMigration">
|
| 14 |
+
<option name="stateVersion" value="1" />
|
| 15 |
+
</component>
|
| 16 |
+
<component name="ProjectId" id="2Poxmc2HHyhQ85i4TLtzuLFsOBK" />
|
| 17 |
+
<component name="ProjectViewState">
|
| 18 |
+
<option name="hideEmptyMiddlePackages" value="true" />
|
| 19 |
+
<option name="showLibraryContents" value="true" />
|
| 20 |
+
</component>
|
| 21 |
+
<component name="PropertiesComponent">{
|
| 22 |
+
"keyToString": {
|
| 23 |
+
"RunOnceActivity.OpenProjectViewOnStart": "true",
|
| 24 |
+
"RunOnceActivity.ShowReadmeOnStart": "true"
|
| 25 |
+
}
|
| 26 |
+
}</component>
|
| 27 |
+
<component name="RunManager">
|
| 28 |
+
<configuration name="main" type="PythonConfigurationType" factoryName="Python" nameIsGenerated="true">
|
| 29 |
+
<module name="PPO" />
|
| 30 |
+
<option name="INTERPRETER_OPTIONS" value="" />
|
| 31 |
+
<option name="PARENT_ENVS" value="true" />
|
| 32 |
+
<envs>
|
| 33 |
+
<env name="PYTHONUNBUFFERED" value="1" />
|
| 34 |
+
</envs>
|
| 35 |
+
<option name="SDK_HOME" value="" />
|
| 36 |
+
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
|
| 37 |
+
<option name="IS_MODULE_SDK" value="true" />
|
| 38 |
+
<option name="ADD_CONTENT_ROOTS" value="true" />
|
| 39 |
+
<option name="ADD_SOURCE_ROOTS" value="true" />
|
| 40 |
+
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/main.py" />
|
| 41 |
+
<option name="PARAMETERS" value="" />
|
| 42 |
+
<option name="SHOW_COMMAND_LINE" value="false" />
|
| 43 |
+
<option name="EMULATE_TERMINAL" value="false" />
|
| 44 |
+
<option name="MODULE_MODE" value="false" />
|
| 45 |
+
<option name="REDIRECT_INPUT" value="false" />
|
| 46 |
+
<option name="INPUT_FILE" value="" />
|
| 47 |
+
<method v="2" />
|
| 48 |
+
</configuration>
|
| 49 |
+
</component>
|
| 50 |
+
<component name="SpellCheckerSettings" RuntimeDictionaries="0" Folders="0" CustomDictionaries="0" DefaultDictionary="application-level" UseSingleDictionary="true" transferred="true" />
|
| 51 |
+
<component name="TaskManager">
|
| 52 |
+
<task active="true" id="Default" summary="Default task">
|
| 53 |
+
<changelist id="82c11718-8476-4ed5-8f5a-34544b12ac29" name="Changes" comment="" />
|
| 54 |
+
<created>1684137395396</created>
|
| 55 |
+
<option name="number" value="Default" />
|
| 56 |
+
<option name="presentableId" value="Default" />
|
| 57 |
+
<updated>1684137395396</updated>
|
| 58 |
+
</task>
|
| 59 |
+
<servers />
|
| 60 |
+
</component>
|
| 61 |
+
</project>
|
README.md
CHANGED
|
@@ -16,7 +16,7 @@ model-index:
|
|
| 16 |
type: Pixelcopter-PLE-v0
|
| 17 |
metrics:
|
| 18 |
- type: mean_reward
|
| 19 |
-
value:
|
| 20 |
name: mean_reward
|
| 21 |
verified: false
|
| 22 |
---
|
|
|
|
| 16 |
type: Pixelcopter-PLE-v0
|
| 17 |
metrics:
|
| 18 |
- type: mean_reward
|
| 19 |
+
value: 0.00 +/- 0.00
|
| 20 |
name: mean_reward
|
| 21 |
verified: false
|
| 22 |
---
|
hyperparameters.json
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"h_size": 64, "n_training_episodes":
|
|
|
|
| 1 |
+
{"h_size": 64, "n_training_episodes": 1000, "n_evaluation_episodes": 10, "max_t": 10000, "gamma": 0.99, "lr": 0.0001, "env_id": "Pixelcopter-PLE-v0", "state_space": 7, "action_space": 2}
|
main.py
ADDED
|
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import datetime
|
| 3 |
+
import tempfile
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
from collections import deque
|
| 8 |
+
|
| 9 |
+
# PyTorch
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
import torch.optim as optim
|
| 14 |
+
from huggingface_hub import metadata_eval_result, HfApi, metadata_save
|
| 15 |
+
from torch.distributions import Categorical
|
| 16 |
+
|
| 17 |
+
# Gym
|
| 18 |
+
import gym
|
| 19 |
+
import gym_pygame
|
| 20 |
+
|
| 21 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 22 |
+
print(device)
|
| 23 |
+
|
| 24 |
+
env_id = "Pixelcopter-PLE-v0"
|
| 25 |
+
env = gym.make(env_id)
|
| 26 |
+
eval_env = gym.make(env_id)
|
| 27 |
+
s_size = env.observation_space.shape[0]
|
| 28 |
+
a_size = env.action_space.n
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class Policy(nn.Module):
|
| 32 |
+
def __init__(self, s_size, a_size, h_size):
|
| 33 |
+
super(Policy, self).__init__()
|
| 34 |
+
self.fc1 = nn.Linear(s_size, h_size)
|
| 35 |
+
self.fc2 = nn.Linear(h_size, h_size * 2)
|
| 36 |
+
self.fc3 = nn.Linear(h_size * 2, a_size)
|
| 37 |
+
|
| 38 |
+
def forward(self, x):
|
| 39 |
+
x = F.relu(self.fc1(x))
|
| 40 |
+
x = F.relu(self.fc2(x))
|
| 41 |
+
x = self.fc3(x)
|
| 42 |
+
return F.softmax(x, dim=1)
|
| 43 |
+
|
| 44 |
+
def act(self, state):
|
| 45 |
+
state = torch.from_numpy(state).float().unsqueeze(0).to(device)
|
| 46 |
+
probs = self.forward(state).cpu()
|
| 47 |
+
m = Categorical(probs)
|
| 48 |
+
action = m.sample()
|
| 49 |
+
return action.item(), m.log_prob(action)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def reinforce(policy, optimizer, n_training_episodes, max_t, gamma, print_every):
|
| 53 |
+
# Help us to calculate the score during the training
|
| 54 |
+
scores_deque = deque(maxlen=100)
|
| 55 |
+
scores = []
|
| 56 |
+
# Line 3 of pseudocode
|
| 57 |
+
for i_episode in range(1, n_training_episodes + 1):
|
| 58 |
+
saved_log_probs = []
|
| 59 |
+
rewards = []
|
| 60 |
+
state = env.reset()
|
| 61 |
+
# Line 4 of pseudocode
|
| 62 |
+
for t in range(max_t):
|
| 63 |
+
action, log_prob = policy.act(state)
|
| 64 |
+
saved_log_probs.append(log_prob)
|
| 65 |
+
state, reward, done, _ = env.step(action)
|
| 66 |
+
rewards.append(reward)
|
| 67 |
+
if done:
|
| 68 |
+
break
|
| 69 |
+
scores_deque.append(sum(rewards))
|
| 70 |
+
scores.append(sum(rewards))
|
| 71 |
+
|
| 72 |
+
# Line 6 of pseudocode: calculate the return
|
| 73 |
+
returns = deque(maxlen=max_t)
|
| 74 |
+
n_steps = len(rewards)
|
| 75 |
+
# Compute the discounted returns at each timestep,
|
| 76 |
+
# as
|
| 77 |
+
# the sum of the gamma-discounted return at time t (G_t) + the reward at time t
|
| 78 |
+
#
|
| 79 |
+
# In O(N) time, where N is the number of time steps
|
| 80 |
+
# (this definition of the discounted return G_t follows the definition of this quantity
|
| 81 |
+
# shown at page 44 of Sutton&Barto 2017 2nd draft)
|
| 82 |
+
# G_t = r_(t+1) + r_(t+2) + ...
|
| 83 |
+
|
| 84 |
+
# Given this formulation, the returns at each timestep t can be computed
|
| 85 |
+
# by re-using the computed future returns G_(t+1) to compute the current return G_t
|
| 86 |
+
# G_t = r_(t+1) + gamma*G_(t+1)
|
| 87 |
+
# G_(t-1) = r_t + gamma* G_t
|
| 88 |
+
# (this follows a dynamic programming approach, with which we memorize solutions in order
|
| 89 |
+
# to avoid computing them multiple times)
|
| 90 |
+
|
| 91 |
+
# This is correct since the above is equivalent to (see also page 46 of Sutton&Barto 2017 2nd draft)
|
| 92 |
+
# G_(t-1) = r_t + gamma*r_(t+1) + gamma*gamma*r_(t+2) + ...
|
| 93 |
+
|
| 94 |
+
## Given the above, we calculate the returns at timestep t as:
|
| 95 |
+
# gamma[t] * return[t] + reward[t]
|
| 96 |
+
#
|
| 97 |
+
## We compute this starting from the last timestep to the first, in order
|
| 98 |
+
## to employ the formula presented above and avoid redundant computations that would be needed
|
| 99 |
+
## if we were to do it from first to last.
|
| 100 |
+
|
| 101 |
+
## Hence, the queue "returns" will hold the returns in chronological order, from t=0 to t=n_steps
|
| 102 |
+
## thanks to the appendleft() function which allows to append to the position 0 in constant time O(1)
|
| 103 |
+
## a normal python list would instead require O(N) to do this.
|
| 104 |
+
for t in range(n_steps)[::-1]:
|
| 105 |
+
disc_return_t = (returns[0] if len(returns) > 0 else 0)
|
| 106 |
+
returns.appendleft(gamma * disc_return_t + rewards[t])
|
| 107 |
+
|
| 108 |
+
## standardization of the returns is employed to make training more stable
|
| 109 |
+
eps = np.finfo(np.float32).eps.item()
|
| 110 |
+
## eps is the smallest representable float, which is
|
| 111 |
+
# added to the standard deviation of the returns to avoid numerical instabilities
|
| 112 |
+
returns = torch.tensor(returns)
|
| 113 |
+
returns = (returns - returns.mean()) / (returns.std() + eps)
|
| 114 |
+
|
| 115 |
+
# Line 7:
|
| 116 |
+
policy_loss = []
|
| 117 |
+
for log_prob, disc_return in zip(saved_log_probs, returns):
|
| 118 |
+
policy_loss.append(-log_prob * disc_return)
|
| 119 |
+
policy_loss = torch.cat(policy_loss).sum()
|
| 120 |
+
|
| 121 |
+
# Line 8: PyTorch prefers gradient descent
|
| 122 |
+
optimizer.zero_grad()
|
| 123 |
+
policy_loss.backward()
|
| 124 |
+
optimizer.step()
|
| 125 |
+
|
| 126 |
+
if i_episode % print_every == 0:
|
| 127 |
+
print('Episode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_deque)))
|
| 128 |
+
|
| 129 |
+
return scores
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
pixelcopter_hyperparameters = {
|
| 133 |
+
"h_size": 64,
|
| 134 |
+
"n_training_episodes": 1000,
|
| 135 |
+
"n_evaluation_episodes": 10,
|
| 136 |
+
"max_t": 10000,
|
| 137 |
+
"gamma": 0.99,
|
| 138 |
+
"lr": 1e-4,
|
| 139 |
+
"env_id": env_id,
|
| 140 |
+
"state_space": s_size,
|
| 141 |
+
"action_space": a_size,
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
# Create policy and place it to the device
|
| 145 |
+
# torch.manual_seed(50)
|
| 146 |
+
pixelcopter_policy = Policy(pixelcopter_hyperparameters["state_space"], pixelcopter_hyperparameters["action_space"],
|
| 147 |
+
pixelcopter_hyperparameters["h_size"]).to(device)
|
| 148 |
+
pixelcopter_optimizer = optim.Adam(pixelcopter_policy.parameters(), lr=pixelcopter_hyperparameters["lr"])
|
| 149 |
+
|
| 150 |
+
scores = reinforce(pixelcopter_policy,
|
| 151 |
+
pixelcopter_optimizer,
|
| 152 |
+
pixelcopter_hyperparameters["n_training_episodes"],
|
| 153 |
+
pixelcopter_hyperparameters["max_t"],
|
| 154 |
+
pixelcopter_hyperparameters["gamma"],
|
| 155 |
+
1000)
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def push_to_hub(repo_id,
|
| 159 |
+
model,
|
| 160 |
+
hyperparameters,
|
| 161 |
+
):
|
| 162 |
+
"""
|
| 163 |
+
Evaluate, Generate a video and Upload a model to Hugging Face Hub.
|
| 164 |
+
This method does the complete pipeline:
|
| 165 |
+
- It evaluates the model
|
| 166 |
+
- It generates the model card
|
| 167 |
+
- It generates a replay video of the agent
|
| 168 |
+
- It pushes everything to the Hub
|
| 169 |
+
|
| 170 |
+
:param repo_id: repo_id: id of the model repository from the Hugging Face Hub
|
| 171 |
+
:param model: the pytorch model we want to save
|
| 172 |
+
:param hyperparameters: training hyperparameters
|
| 173 |
+
:param eval_env: evaluation environment
|
| 174 |
+
:param video_fps: how many frame per seconds to record our video replay
|
| 175 |
+
"""
|
| 176 |
+
|
| 177 |
+
_, repo_name = repo_id.split("/")
|
| 178 |
+
api = HfApi()
|
| 179 |
+
|
| 180 |
+
# Step 1: Create the repo
|
| 181 |
+
repo_url = api.create_repo(
|
| 182 |
+
repo_id=repo_id,
|
| 183 |
+
exist_ok=True,
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
# Step 2: Save the model
|
| 187 |
+
torch.save(model, "model.pt")
|
| 188 |
+
|
| 189 |
+
# Step 3: Save the hyperparameters to JSON
|
| 190 |
+
with open("hyperparameters.json", "w") as outfile:
|
| 191 |
+
json.dump(hyperparameters, outfile)
|
| 192 |
+
|
| 193 |
+
# Step 4: Evaluate the model and build JSON
|
| 194 |
+
mean_reward, std_reward = 0, 0
|
| 195 |
+
# Get datetime
|
| 196 |
+
eval_datetime = datetime.datetime.now()
|
| 197 |
+
eval_form_datetime = eval_datetime.isoformat()
|
| 198 |
+
|
| 199 |
+
evaluate_data = {
|
| 200 |
+
"env_id": hyperparameters["env_id"],
|
| 201 |
+
"mean_reward": mean_reward,
|
| 202 |
+
"n_evaluation_episodes": hyperparameters["n_evaluation_episodes"],
|
| 203 |
+
"eval_datetime": eval_form_datetime,
|
| 204 |
+
}
|
| 205 |
+
|
| 206 |
+
# Write a JSON file
|
| 207 |
+
with open("results.json", "w") as outfile:
|
| 208 |
+
json.dump(evaluate_data, outfile)
|
| 209 |
+
|
| 210 |
+
# Step 5: Create the model card
|
| 211 |
+
env_name = hyperparameters["env_id"]
|
| 212 |
+
|
| 213 |
+
metadata = {}
|
| 214 |
+
metadata["tags"] = [
|
| 215 |
+
env_name,
|
| 216 |
+
"reinforce",
|
| 217 |
+
"reinforcement-learning",
|
| 218 |
+
"custom-implementation",
|
| 219 |
+
"deep-rl-class"
|
| 220 |
+
]
|
| 221 |
+
|
| 222 |
+
# Add metrics
|
| 223 |
+
eval = metadata_eval_result(
|
| 224 |
+
model_pretty_name=repo_name,
|
| 225 |
+
task_pretty_name="reinforcement-learning",
|
| 226 |
+
task_id="reinforcement-learning",
|
| 227 |
+
metrics_pretty_name="mean_reward",
|
| 228 |
+
metrics_id="mean_reward",
|
| 229 |
+
metrics_value=f"{mean_reward:.2f} +/- {std_reward:.2f}",
|
| 230 |
+
dataset_pretty_name=env_name,
|
| 231 |
+
dataset_id=env_name,
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
# Merges both dictionaries
|
| 235 |
+
metadata = {**metadata, **eval}
|
| 236 |
+
|
| 237 |
+
model_card = f"""
|
| 238 |
+
# **Reinforce** Agent playing **{env_id}**
|
| 239 |
+
This is a trained model of a **Reinforce** agent playing **{env_id}** .
|
| 240 |
+
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
| 241 |
+
"""
|
| 242 |
+
|
| 243 |
+
readme_path = "README.md"
|
| 244 |
+
readme = model_card
|
| 245 |
+
with open(readme_path, "w", encoding="utf-8") as f:
|
| 246 |
+
f.write(readme)
|
| 247 |
+
|
| 248 |
+
# Save our metrics to Readme metadata
|
| 249 |
+
metadata_save(readme_path, metadata)
|
| 250 |
+
|
| 251 |
+
# Step 7. Push everything to the Hub
|
| 252 |
+
api.upload_folder(
|
| 253 |
+
repo_id=repo_id,
|
| 254 |
+
folder_path=".",
|
| 255 |
+
path_in_repo=".",
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
print(f"Your model is pushed to the Hub. You can view your model here: {repo_url}")
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
repo_id = "cyrodw/Reinforce-Pixelcopter" # TODO Define your repo id {username/Reinforce-{model-id}}
|
| 262 |
+
push_to_hub(repo_id,
|
| 263 |
+
pixelcopter_policy, # The model we want to save
|
| 264 |
+
pixelcopter_hyperparameters, # Hyperparameters
|
| 265 |
+
)
|
model.pt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 39239
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d8cec34e623aac7a14072410390f26a7ea6c16ea4382739edc385a26fb73e7b8
|
| 3 |
size 39239
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
gymnasium
|
results.json
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"env_id": "Pixelcopter-PLE-v0", "mean_reward":
|
|
|
|
| 1 |
+
{"env_id": "Pixelcopter-PLE-v0", "mean_reward": 0, "n_evaluation_episodes": 10, "eval_datetime": "2023-05-16T15:12:27.011351"}
|