|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from contextlib import nullcontext |
|
import logging |
|
import os |
|
import torch |
|
import json |
|
import re |
|
import datetime |
|
import yaml |
|
|
|
|
|
import torch.optim as optim |
|
import torch.distributed as dist |
|
|
|
from torch.utils.tensorboard import SummaryWriter |
|
from torch.utils.data import DataLoader |
|
from torch.nn.utils import clip_grad_norm_ |
|
|
|
|
|
|
|
from cosyvoice.dataset.dataset import Dataset |
|
from cosyvoice.utils.scheduler import WarmupLR, NoamHoldAnnealing, ConstantLR |
|
|
|
|
|
def init_distributed(args): |
|
world_size = int(os.environ.get('WORLD_SIZE', 1)) |
|
local_rank = int(os.environ.get('LOCAL_RANK', 0)) |
|
rank = int(os.environ.get('RANK', 0)) |
|
logging.info('training on multiple gpus, this gpu {}'.format(local_rank) + |
|
', rank {}, world_size {}'.format(rank, world_size)) |
|
if args.train_engine == 'torch_ddp': |
|
torch.cuda.set_device(local_rank) |
|
dist.init_process_group(args.dist_backend) |
|
else: |
|
deepspeed.init_distributed(dist_backend=args.dist_backend) |
|
return world_size, local_rank, rank |
|
|
|
|
|
def init_dataset_and_dataloader(args, configs): |
|
train_dataset = Dataset(args.train_data, data_pipeline=configs['data_pipeline'], mode='train', shuffle=True, partition=True) |
|
cv_dataset = Dataset(args.cv_data, data_pipeline=configs['data_pipeline'], mode='train', shuffle=False, partition=False) |
|
|
|
|
|
train_data_loader = DataLoader(train_dataset, |
|
batch_size=None, |
|
pin_memory=args.pin_memory, |
|
num_workers=args.num_workers, |
|
prefetch_factor=args.prefetch) |
|
cv_data_loader = DataLoader(cv_dataset, |
|
batch_size=None, |
|
pin_memory=args.pin_memory, |
|
num_workers=args.num_workers, |
|
prefetch_factor=args.prefetch) |
|
return train_dataset, cv_dataset, train_data_loader, cv_data_loader |
|
|
|
|
|
|
|
def check_modify_and_save_config(args, configs): |
|
if args.train_engine == "torch_ddp": |
|
configs['train_conf']["dtype"] = 'fp32' |
|
else: |
|
with open(args.deepspeed_config, 'r') as fin: |
|
ds_configs = json.load(fin) |
|
if "fp16" in ds_configs and ds_configs["fp16"]["enabled"]: |
|
configs['train_conf']["dtype"] = "fp16" |
|
elif "bf16" in ds_configs and ds_configs["bf16"]["enabled"]: |
|
configs['train_conf']["dtype"] = "bf16" |
|
else: |
|
configs['train_conf']["dtype"] = "fp32" |
|
assert ds_configs["train_micro_batch_size_per_gpu"] == 1 |
|
|
|
configs['train_conf']['save_per_step'] = int(configs['train_conf']['save_per_step'] * configs['train_conf']['accum_grad'] / ds_configs["gradient_accumulation_steps"]) |
|
configs['train_conf']['accum_grad'] = ds_configs["gradient_accumulation_steps"] |
|
configs['train_conf']['grad_clip'] = ds_configs["gradient_clipping"] |
|
configs['train_conf']['log_interval'] = ds_configs["steps_per_print"] |
|
return configs |
|
|
|
|
|
def wrap_cuda_model(args, model): |
|
local_world_size = int(os.environ.get('LOCAL_WORLD_SIZE', 1)) |
|
world_size = int(os.environ.get('WORLD_SIZE', 1)) |
|
if args.train_engine == "torch_ddp": |
|
assert (torch.cuda.is_available()) |
|
model.cuda() |
|
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True) |
|
else: |
|
if int(os.environ.get('RANK', 0)) == 0: |
|
logging.info("Estimating model states memory needs (zero2)...") |
|
estimate_zero2_model_states_mem_needs_all_live( |
|
model, |
|
num_gpus_per_node=local_world_size, |
|
num_nodes=world_size // local_world_size) |
|
return model |
|
|
|
|
|
def init_optimizer_and_scheduler(args, configs, model): |
|
if configs['train_conf']['optim'] == 'adam': |
|
optimizer = optim.Adam(model.parameters(), **configs['train_conf']['optim_conf']) |
|
elif configs['train_conf']['optim'] == 'adamw': |
|
optimizer = optim.AdamW(model.parameters(), **configs['train_conf']['optim_conf']) |
|
else: |
|
raise ValueError("unknown optimizer: " + configs['train_conf']) |
|
|
|
if configs['train_conf']['scheduler'] == 'warmuplr': |
|
scheduler_type = WarmupLR |
|
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf']) |
|
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing': |
|
scheduler_type = NoamHoldAnnealing |
|
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf']) |
|
elif configs['train_conf']['scheduler'] == 'constantlr': |
|
scheduler_type = ConstantLR |
|
scheduler = ConstantLR(optimizer) |
|
else: |
|
raise ValueError("unknown scheduler: " + configs['train_conf']) |
|
|
|
|
|
if args.train_engine == "deepspeed": |
|
def scheduler(opt): |
|
return scheduler_type(opt, **configs['train_conf']['scheduler_conf']) |
|
model, optimizer, _, scheduler = deepspeed.initialize( |
|
args=args, |
|
model=model, |
|
optimizer=None, |
|
lr_scheduler=scheduler, |
|
model_parameters=model.parameters()) |
|
|
|
return model, optimizer, scheduler |
|
|
|
|
|
def init_summarywriter(args): |
|
writer = None |
|
if int(os.environ.get('RANK', 0)) == 0: |
|
os.makedirs(args.model_dir, exist_ok=True) |
|
writer = SummaryWriter(args.tensorboard_dir) |
|
return writer |
|
|
|
|
|
def save_model(model, model_name, info_dict): |
|
rank = int(os.environ.get('RANK', 0)) |
|
model_dir = info_dict["model_dir"] |
|
save_model_path = os.path.join(model_dir, '{}.pt'.format(model_name)) |
|
|
|
if info_dict["train_engine"] == "torch_ddp": |
|
if rank == 0: |
|
torch.save(model.module.state_dict(), save_model_path) |
|
else: |
|
with torch.no_grad(): |
|
model.save_checkpoint(save_dir=model_dir, |
|
tag=model_name, |
|
client_state=info_dict) |
|
if rank == 0: |
|
info_path = re.sub('.pt$', '.yaml', save_model_path) |
|
info_dict['save_time'] = datetime.datetime.now().strftime('%d/%m/%Y %H:%M:%S') |
|
with open(info_path, 'w') as fout: |
|
data = yaml.dump(info_dict) |
|
fout.write(data) |
|
logging.info('[Rank {}] Checkpoint: save to checkpoint {}'.format(rank, save_model_path)) |
|
|
|
|
|
def cosyvoice_join(group_join, info_dict): |
|
world_size = int(os.environ.get('WORLD_SIZE', 1)) |
|
local_rank = int(os.environ.get('LOCAL_RANK', 0)) |
|
rank = int(os.environ.get('RANK', 0)) |
|
|
|
if info_dict["batch_idx"] != 0: |
|
|
|
try: |
|
dist.monitored_barrier(group=group_join, |
|
timeout=group_join.options._timeout) |
|
return False |
|
except RuntimeError as e: |
|
logging.info("Detected uneven workload distribution: {}\n".format(e) + |
|
"Break current worker to manually join all workers, " + |
|
"world_size {}, current rank {}, current local_rank {}\n". |
|
format(world_size, rank, local_rank)) |
|
return True |
|
else: |
|
return False |
|
|
|
|
|
def batch_forward(model, batch, info_dict): |
|
device = int(os.environ.get('LOCAL_RANK', 0)) |
|
|
|
dtype = info_dict["dtype"] |
|
if dtype == "fp16": |
|
dtype = torch.float16 |
|
elif dtype == "bf16": |
|
dtype = torch.bfloat16 |
|
else: |
|
dtype = torch.float32 |
|
|
|
if info_dict['train_engine'] == 'torch_ddp': |
|
autocast = nullcontext() |
|
else: |
|
autocast = torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False) |
|
|
|
with autocast: |
|
info_dict['loss_dict'] = model(batch, device) |
|
return info_dict |
|
|
|
|
|
def batch_backward(model, info_dict): |
|
if info_dict["train_engine"] == "deepspeed": |
|
scaled_loss = model.backward(info_dict['loss_dict']['loss']) |
|
else: |
|
scaled_loss = info_dict['loss_dict']['loss'] / info_dict['accum_grad'] |
|
scaled_loss.backward() |
|
|
|
info_dict['loss_dict']['loss'] = scaled_loss |
|
return info_dict |
|
|
|
|
|
def update_parameter_and_lr(model, optimizer, scheduler, info_dict): |
|
grad_norm = 0.0 |
|
if info_dict['train_engine'] == "deepspeed": |
|
info_dict["is_gradient_accumulation_boundary"] = model.is_gradient_accumulation_boundary() |
|
model.step() |
|
grad_norm = model.get_global_grad_norm() |
|
elif (info_dict['batch_idx'] + 1) % info_dict["accum_grad"] == 0: |
|
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip']) |
|
if torch.isfinite(grad_norm): |
|
optimizer.step() |
|
optimizer.zero_grad() |
|
scheduler.step() |
|
info_dict["lr"] = optimizer.param_groups[0]['lr'] |
|
info_dict["grad_norm"] = grad_norm |
|
return info_dict |
|
|
|
|
|
def log_per_step(writer, info_dict): |
|
tag = info_dict["tag"] |
|
epoch = info_dict.get('epoch', 0) |
|
step = info_dict["step"] |
|
batch_idx = info_dict["batch_idx"] |
|
loss_dict = info_dict['loss_dict'] |
|
rank = int(os.environ.get('RANK', 0)) |
|
|
|
|
|
if writer is not None: |
|
if (info_dict['train_engine'] == 'deepspeed' and info_dict['is_gradient_accumulation_boundary'] is True) or \ |
|
(info_dict['train_engine'] == 'torch_ddp' and (info_dict['batch_idx'] + 1) % info_dict['accum_grad'] == 0): |
|
for k in ['epoch', 'lr', 'grad_norm']: |
|
writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1) |
|
for k, v in loss_dict.items(): |
|
writer.add_scalar('{}/{}'.format(tag, k), v, step + 1) |
|
|
|
|
|
if (info_dict['batch_idx'] + 1) % info_dict['log_interval'] == 0: |
|
log_str = '{} Batch {}/{} '.format(tag, epoch, batch_idx + 1) |
|
for name, value in loss_dict.items(): |
|
log_str += '{} {:.6f} '.format(name, value) |
|
if tag == "TRAIN": |
|
log_str += 'lr {:.8f} grad_norm {:.6f}'.format( |
|
info_dict["lr"], info_dict['grad_norm']) |
|
log_str += ' rank {}'.format(rank) |
|
logging.debug(log_str) |
|
|
|
|
|
def log_per_save(writer, info_dict): |
|
tag = info_dict["tag"] |
|
epoch = info_dict["epoch"] |
|
step = info_dict["step"] |
|
loss_dict = info_dict["loss_dict"] |
|
lr = info_dict['lr'] |
|
rank = int(os.environ.get('RANK', 0)) |
|
logging.info( |
|
'Epoch {} Step {} CV info lr {} {} rank {}'.format( |
|
epoch, step + 1, lr, rank, ' '.join(['{}_{}'.format(k, v) for k, v in loss_dict.items()]))) |
|
|
|
if writer is not None: |
|
for k in ['epoch', 'lr']: |
|
writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1) |
|
for k, v in loss_dict.items(): |
|
writer.add_scalar('{}/{}'.format(tag, k), v, step + 1) |
|
|