egeozguroglu
commited on
Commit
•
523ca28
1
Parent(s):
7f73308
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,27 @@
|
|
1 |
---
|
2 |
license: cc-by-nc-4.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-nc-4.0
|
3 |
---
|
4 |
+
# pix2gestalt Model Weights
|
5 |
+
[Code](https://github.com/cvlab-columbia/pix2gestalt), [Website](https://gestalt.cs.columbia.edu/), [arXiv](https://arxiv.org/abs/2401.14398)
|
6 |
+
[pix2gestalt: Amodal Segmentation by Synthesizing Wholes](https://gestalt.cs.columbia.edu/)
|
7 |
+
[Ege Ozguroglu](https://egeozguroglu.github.io/)<sup>1</sup>, [Ruoshi Liu](https://ruoshiliu.github.io/)<sup>1</sup>, [Dídac Surís](https://www.didacsuris.com/)<sup>1</sup>, [Dian Chen](https://scholar.google.com/citations?user=zdAyna8AAAAJ&hl=en)<sup>2</sup>, [Achal Dave](https://www.achaldave.com/)<sup>2</sup>, [Pavel Tokmakov](https://pvtokmakov.github.io/home/)<sup>2</sup>, [Carl Vondrick](https://www.cs.columbia.edu/~vondrick/)<sup>1</sup> <br>
|
8 |
+
<sup>1</sup>Columbia University, <sup>2</sup>Toyota Research Institute
|
9 |
+
<div align="left">
|
10 |
+
<a href="https://gestalt.cs.columbia.edu/"><img height="80%" alt="pix2gestalt" src="https://gestalt.cs.columbia.edu/static/images/teaser/%20pix2gestalt_teaser.jpg"></a>
|
11 |
+
</div>
|
12 |
+
<b>pix2gestalt</b> synthesizes whole objects from only partially visible ones, enabling amodal segmentation, recognition, and 3D reconstruction of occluded objects.
|
13 |
+
|
14 |
+
## Citation
|
15 |
+
```
|
16 |
+
@misc{ozguroglu2024pix2gestalt,
|
17 |
+
title={pix2gestalt: Amodal Segmentation by Synthesizing Wholes},
|
18 |
+
author={Ege Ozguroglu and Ruoshi Liu and Dídac Surís and Dian Chen and Achal Dave and Pavel Tokmakov and Carl Vondrick},
|
19 |
+
year={2024},
|
20 |
+
eprint={2401.14398},
|
21 |
+
archivePrefix={arXiv},
|
22 |
+
primaryClass={cs.CV}
|
23 |
+
}
|
24 |
+
```
|
25 |
+
|
26 |
+
## Acknowledgement
|
27 |
+
This research is based on work partially supported by the Toyota Research Institute, the DARPA MCS program under Federal Agreement No. N660011924032, the NSF NRI Award \#1925157, and the NSF AI Institute for Artificial and Natural Intelligence Award \#2229929. DS is supported by the Microsoft PhD Fellowship.
|