egeozguroglu commited on
Commit
523ca28
·
verified ·
1 Parent(s): 7f73308

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -0
README.md CHANGED
@@ -1,3 +1,27 @@
1
  ---
2
  license: cc-by-nc-4.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-4.0
3
  ---
4
+ # pix2gestalt Model Weights
5
+ [Code](https://github.com/cvlab-columbia/pix2gestalt), [Website](https://gestalt.cs.columbia.edu/), [arXiv](https://arxiv.org/abs/2401.14398)
6
+ [pix2gestalt: Amodal Segmentation by Synthesizing Wholes](https://gestalt.cs.columbia.edu/)
7
+ [Ege Ozguroglu](https://egeozguroglu.github.io/)<sup>1</sup>, [Ruoshi Liu](https://ruoshiliu.github.io/)<sup>1</sup>, [Dídac Surís](https://www.didacsuris.com/)<sup>1</sup>, [Dian Chen](https://scholar.google.com/citations?user=zdAyna8AAAAJ&hl=en)<sup>2</sup>, [Achal Dave](https://www.achaldave.com/)<sup>2</sup>, [Pavel Tokmakov](https://pvtokmakov.github.io/home/)<sup>2</sup>, [Carl Vondrick](https://www.cs.columbia.edu/~vondrick/)<sup>1</sup> <br>
8
+ <sup>1</sup>Columbia University, <sup>2</sup>Toyota Research Institute
9
+ <div align="left">
10
+ <a href="https://gestalt.cs.columbia.edu/"><img height="80%" alt="pix2gestalt" src="https://gestalt.cs.columbia.edu/static/images/teaser/%20pix2gestalt_teaser.jpg"></a>
11
+ </div>
12
+ <b>pix2gestalt</b> synthesizes whole objects from only partially visible ones, enabling amodal segmentation, recognition, and 3D reconstruction of occluded objects.
13
+
14
+ ## Citation
15
+ ```
16
+ @misc{ozguroglu2024pix2gestalt,
17
+ title={pix2gestalt: Amodal Segmentation by Synthesizing Wholes},
18
+ author={Ege Ozguroglu and Ruoshi Liu and Dídac Surís and Dian Chen and Achal Dave and Pavel Tokmakov and Carl Vondrick},
19
+ year={2024},
20
+ eprint={2401.14398},
21
+ archivePrefix={arXiv},
22
+ primaryClass={cs.CV}
23
+ }
24
+ ```
25
+
26
+ ## Acknowledgement
27
+ This research is based on work partially supported by the Toyota Research Institute, the DARPA MCS program under Federal Agreement No. N660011924032, the NSF NRI Award \#1925157, and the NSF AI Institute for Artificial and Natural Intelligence Award \#2229929. DS is supported by the Microsoft PhD Fellowship.