Upload model to Hugging Face
Browse files- PPO-punish-stagnant-bounds.zip +3 -0
- PPO-punish-stagnant-bounds/_stable_baselines3_version +1 -0
- PPO-punish-stagnant-bounds/data +95 -0
- PPO-punish-stagnant-bounds/policy.optimizer.pth +3 -0
- PPO-punish-stagnant-bounds/policy.pth +3 -0
- PPO-punish-stagnant-bounds/pytorch_variables.pth +3 -0
- PPO-punish-stagnant-bounds/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
PPO-punish-stagnant-bounds.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:593ea9c27718c4a53ee694f20c8a2f2ce14f0228e70cace58b1c88d568d6dc96
|
3 |
+
size 150390
|
PPO-punish-stagnant-bounds/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
PPO-punish-stagnant-bounds/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e8b2e9240>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e8b2e92d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e8b2e9360>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e8b2e93f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7e8b2e9480>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7e8b2e9510>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7e8b2e95a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e8b2e9630>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7e8b2e96c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e8b2e9750>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e8b2e97e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e8b2e9870>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f7e8b2daf00>"
|
21 |
+
},
|
22 |
+
"verbose": true,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVuQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgLSwqFlIwBQ5R0lFKUjARoaWdolGgTKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaAtLCoWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCJLCoWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
10
|
30 |
+
],
|
31 |
+
"low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]",
|
32 |
+
"high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]",
|
33 |
+
"bounded_below": "[ True True True True True True True True True True]",
|
34 |
+
"bounded_above": "[ True True True True True True True True True True]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 4,
|
46 |
+
"num_timesteps": 204800,
|
47 |
+
"_total_timesteps": 200000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1681928439825842716,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAK+ldkJkDKC/O6pAQurTyUF6ZbVB6hYKQgAAyEIAAMhCAADIQgAAyELUKYVCuVvSvwAAyEKC8TBCA93KQQmV3UEAAMhC5x3BQgAAyEIAAMhCcvJ8Qlysur5dIKVBAADIQgAAyEIAAMhCpzCcQgAAyEIAAMhCAADIQoB1iEKpjgHAAADIQgAAyEI49f5BTJjjQXvhMkIAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.02400000000000002,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVaxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITBjNyvY1g8CUhpRSlIwBbJRLu4wBdJRHQIayFxVAAyV1fZQoaAZoCWgPQwiEZWzoZglxwJSGlFKUaBVNLQFoFkdAhrWWy1NQCXV9lChoBmgJaA9DCGoWaHdICIXAlIaUUpRoFUvsaBZHQIa31baAWi11fZQoaAZoCWgPQwjd09Udi+9vwJSGlFKUaBVNLQFoFkdAhsJRqfvnbXV9lChoBmgJaA9DCELr4ctEh2/AlIaUUpRoFU0tAWgWR0CG1IzRhMJydX2UKGgGaAloD0MICHWRQtmRb8CUhpRSlGgVTS0BaBZHQIbYCLwWnCR1fZQoaAZoCWgPQwjFrBdD+VJwwJSGlFKUaBVNLQFoFkdAhtqBaC+UQnV9lChoBmgJaA9DCPoLPWI0Jn/AlIaUUpRoFUtEaBZHQIcrlERaouR1fZQoaAZoCWgPQwgOMPMd/EZvwJSGlFKUaBVNLQFoFkdAhy6UB4lhPXV9lChoBmgJaA9DCCxKCcFqsnDAlIaUUpRoFU0tAWgWR0CHPeTgVGkOdX2UKGgGaAloD0MILINqg5PxcMCUhpRSlGgVTS0BaBZHQIdBXBtUGV11fZQoaAZoCWgPQwiE8GjjCE1vwJSGlFKUaBVNLQFoFkdAh0tADq4YrXV9lChoBmgJaA9DCEEOSpjpNHPAlIaUUpRoFU0tAWgWR0CHTscMmWt2dX2UKGgGaAloD0MIqknwhvRVhcCUhpRSlGgVS/RoFkdAh1yVt4zJp3V9lChoBmgJaA9DCMfVyK50YXHAlIaUUpRoFU0tAWgWR0CHX0KsMiKSdX2UKGgGaAloD0MIPzvguiK5hMCUhpRSlGgVS9poFkdAh2eZ0KZ2IXV9lChoBmgJaA9DCEC+hApOgHHAlIaUUpRoFU0tAWgWR0CHbPmA9V3mdX2UKGgGaAloD0MI73N8tJjwhcCUhpRSlGgVTQABaBZHQId29Ql8gIR1fZQoaAZoCWgPQwgsR8hAXjxwwJSGlFKUaBVNLQFoFkdAh3vte+mFanV9lChoBmgJaA9DCDnsvmN4nXDAlIaUUpRoFU0tAWgWR0CHgTLM9r44dX2UKGgGaAloD0MIJ8Eb0iibcsCUhpRSlGgVTS0BaBZHQIeG4AMlTm51fZQoaAZoCWgPQwhI/fUKi2xwwJSGlFKUaBVNLQFoFkdAh5JzPa+N+HV9lChoBmgJaA9DCO5AnfJo4W/AlIaUUpRoFU0tAWgWR0CHmhTLns9kdX2UKGgGaAloD0MIs7J9yFsDccCUhpRSlGgVTS0BaBZHQIeheY6XBxh1fZQoaAZoCWgPQwhHBOPgUmGDwJSGlFKUaBVLumgWR0CHpwIJqqOtdX2UKGgGaAloD0MIRtCYSZShcMCUhpRSlGgVTS0BaBZHQIen2d/axot1fZQoaAZoCWgPQwjdByC1aVKAwJSGlFKUaBVLU2gWR0CHsC8yvcJudX2UKGgGaAloD0MIK4arAyALcMCUhpRSlGgVTS0BaBZHQIe6st/WlM11fZQoaAZoCWgPQwifyf55GquFwJSGlFKUaBVLymgWR0CHvLuiN83NdX2UKGgGaAloD0MI7Sk5J/ZJcMCUhpRSlGgVTS0BaBZHQIfCVaEBbOh1fZQoaAZoCWgPQwhD5sqgOoiBwJSGlFKUaBVLemgWR0CHx8QcPvrodX2UKGgGaAloD0MIutv10pTxccCUhpRSlGgVTS0BaBZHQIfQ1eQdS2p1fZQoaAZoCWgPQwiAnDBhtGtwwJSGlFKUaBVNLQFoFkdAh95H+6y0KXV9lChoBmgJaA9DCOV8sfciPHDAlIaUUpRoFU0tAWgWR0CH46f+S8radX2UKGgGaAloD0MItI8V/LZig8CUhpRSlGgVS7RoFkdAh+Vf6GgzxnV9lChoBmgJaA9DCDi/YaJBEYDAlIaUUpRoFUtOaBZHQIfmfanJkoZ1fZQoaAZoCWgPQwhmg0wyshVywJSGlFKUaBVNLQFoFkdAh+lWycCo0nV9lChoBmgJaA9DCLxbWaLThITAlIaUUpRoFUuZaBZHQIf2R9Vmz0J1fZQoaAZoCWgPQwi8zRsnBdiCwJSGlFKUaBVLrWgWR0CH/XLFGXoldX2UKGgGaAloD0MII/Weyqn1cMCUhpRSlGgVTS0BaBZHQIhbtZTyaux1fZQoaAZoCWgPQwiUap+Ox8NwwJSGlFKUaBVNLQFoFkdAiF1posZpBXV9lChoBmgJaA9DCB6NQ/3uBoTAlIaUUpRoFUvKaBZHQIhf+nqFAVx1fZQoaAZoCWgPQwihTKPJxUpvwJSGlFKUaBVNLQFoFkdAiGocOTaCc3V9lChoBmgJaA9DCKAVGLI6yH7AlIaUUpRoFUs7aBZHQIhut3W4EwF1fZQoaAZoCWgPQwjMmljgq71vwJSGlFKUaBVNLQFoFkdAiHBFANXo1XV9lChoBmgJaA9DCLPQzmnWeXHAlIaUUpRoFU0tAWgWR0CIcsEFGG21dX2UKGgGaAloD0MIJctJKP0/cMCUhpRSlGgVTS0BaBZHQIh2zABT4tZ1fZQoaAZoCWgPQwge/S/XIj9vwJSGlFKUaBVNLQFoFkdAiI6EMTewcHV9lChoBmgJaA9DCJRoyeMpG3HAlIaUUpRoFU0tAWgWR0CIkBPpIMBqdX2UKGgGaAloD0MI3lm77YJacMCUhpRSlGgVTS0BaBZHQIiSrw+dK/V1fZQoaAZoCWgPQwjUf9b8+JB7wJSGlFKUaBVLGmgWR0CIlTci4axYdX2UKGgGaAloD0MIbXNjesJVccCUhpRSlGgVTS0BaBZHQIiXO9DhLoR1fZQoaAZoCWgPQwi9pgcF5c5/wJSGlFKUaBVLSGgWR0CIm9vBrN4adX2UKGgGaAloD0MIdLSqJZ3pbsCUhpRSlGgVTS0BaBZHQIiqLjR2KVJ1fZQoaAZoCWgPQwg9gEV+PZ9ywJSGlFKUaBVNLQFoFkdAiKvhk7Omi3V9lChoBmgJaA9DCK358ZcWPXzAlIaUUpRoFUsUaBZHQIisNHvttyh1fZQoaAZoCWgPQwhnfjUHCC5vwJSGlFKUaBVNLQFoFkdAiLMvCl7+k3V9lChoBmgJaA9DCBLb3QP0E3DAlIaUUpRoFU0tAWgWR0CIuB3ztkWidX2UKGgGaAloD0MI628JwP9ShcCUhpRSlGgVS7VoFkdAiL58kD6nBXV9lChoBmgJaA9DCN7mjZNCJm/AlIaUUpRoFU0tAWgWR0CIyowMYuTSdX2UKGgGaAloD0MIW5TZIJO6bsCUhpRSlGgVTS0BaBZHQIjQlB8hLXd1fZQoaAZoCWgPQwiztikel/RtwJSGlFKUaBVNLQFoFkdAiNQUYKpkw3V9lChoBmgJaA9DCGtFm+PcZXDAlIaUUpRoFU0tAWgWR0CI2AR8twrEdX2UKGgGaAloD0MIritmhLdMb8CUhpRSlGgVTS0BaBZHQIjjbAHmig11fZQoaAZoCWgPQwj/dtmvOxxwwJSGlFKUaBVNLQFoFkdAiOqz2nKnvXV9lChoBmgJaA9DCKqbi7/teG/AlIaUUpRoFU0tAWgWR0CI8PoJzDGcdX2UKGgGaAloD0MIeSPzyF9KccCUhpRSlGgVTS0BaBZHQIj4PJvHcUN1fZQoaAZoCWgPQwgRGsHG9aWGwJSGlFKUaBVNLAFoFkdAiQY8vEjxC3V9lChoBmgJaA9DCPtbAvBvg4LAlIaUUpRoFUulaBZHQIkME7yQPqd1fZQoaAZoCWgPQwjbTIV4pOZvwJSGlFKUaBVNLQFoFkdAiQ6ki2UjcHV9lChoBmgJaA9DCPs+HCREA3DAlIaUUpRoFU0tAWgWR0CJFMfeUILPdX2UKGgGaAloD0MIjjwQWeQuccCUhpRSlGgVTS0BaBZHQIl/gEB8x9J1fZQoaAZoCWgPQwhZUu4+h1dwwJSGlFKUaBVNLQFoFkdAiYV3sPatcXV9lChoBmgJaA9DCAdgAyJERnHAlIaUUpRoFU0tAWgWR0CJh+qJdjXndX2UKGgGaAloD0MIKNap8n2rcMCUhpRSlGgVTS0BaBZHQImN2QIUrTZ1fZQoaAZoCWgPQwjHEWvxKYJuwJSGlFKUaBVNLQFoFkdAiaRoC2c8T3V9lChoBmgJaA9DCBNgWP58i3DAlIaUUpRoFU0tAWgWR0CJqopvxYq5dX2UKGgGaAloD0MI+b8jKtT3bcCUhpRSlGgVTS0BaBZHQIms/dweeWh1fZQoaAZoCWgPQwgK2uTwSYduwJSGlFKUaBVNLQFoFkdAibLQKBun/HV9lChoBmgJaA9DCBjshm0L6W/AlIaUUpRoFU0tAWgWR0CJw0Bd2PkrdX2UKGgGaAloD0MIbk4lA8B5ccCUhpRSlGgVTS0BaBZHQInGk4R28qZ1fZQoaAZoCWgPQwjaG3xhMkZwwJSGlFKUaBVNLQFoFkdAicftM495hXV9lChoBmgJaA9DCElHOZiN/33AlIaUUpRoFUszaBZHQInMt+LFXJZ1fZQoaAZoCWgPQwgTKc3mcYlvwJSGlFKUaBVNLQFoFkdAicz2z4UN8XV9lChoBmgJaA9DCHBgcqNI5HDAlIaUUpRoFU0tAWgWR0CJ3Cb70nPWdX2UKGgGaAloD0MICTVDqmipcMCUhpRSlGgVTS0BaBZHQIng85fdAPd1fZQoaAZoCWgPQwh/wW7YtpRvwJSGlFKUaBVNLQFoFkdAieiDGT9sJ3V9lChoBmgJaA9DCC7/If12hXDAlIaUUpRoFU0tAWgWR0CJ6M2itaIOdX2UKGgGaAloD0MImWclrXi2bsCUhpRSlGgVTS0BaBZHQIn7aE6DGtJ1fZQoaAZoCWgPQwjBpzl5EdRwwJSGlFKUaBVNLQFoFkdAigGKGUOd5XV9lChoBmgJaA9DCIo6cw+JYG/AlIaUUpRoFU0tAWgWR0CKCkbTc6/7dX2UKGgGaAloD0MIdXXHYpvbbsCUhpRSlGgVTS0BaBZHQIoKlALRa5h1fZQoaAZoCWgPQwhnutdJ/ZmDwJSGlFKUaBVLoWgWR0CKHFuTibUgdX2UKGgGaAloD0MIll6bjZUVcMCUhpRSlGgVTS0BaBZHQIod5gogFHJ1fZQoaAZoCWgPQwgKEAUzphVvwJSGlFKUaBVNLQFoFkdAiiQPaURnOHV9lChoBmgJaA9DCDLH8q56OG7AlIaUUpRoFU0tAWgWR0CKKwQkona4dX2UKGgGaAloD0MIXHLcKZ2bcMCUhpRSlGgVTS0BaBZHQIo6vs5XEIh1fZQoaAZoCWgPQwjZfFwbarZwwJSGlFKUaBVNLQFoFkdAijvxGlQ/HHV9lChoBmgJaA9DCD0LQnmfiG7AlIaUUpRoFU0tAWgWR0CKP+IcBEKFdX2UKGgGaAloD0MIBB2taslab8CUhpRSlGgVTS0BaBZHQIpFuFJxvNx1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 1120,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.5,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
PPO-punish-stagnant-bounds/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0b182be5a81fdfbf297562f0ee459767a5b7ebcd792c0763dfeeea88e23b54d
|
3 |
+
size 90105
|
PPO-punish-stagnant-bounds/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67e14c10145f4d81fd5dc108151b880a23934be7b1b4ec59ebe9e5c2f78cdd4b
|
3 |
+
size 44417
|
PPO-punish-stagnant-bounds/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-punish-stagnant-bounds/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2
|
2 |
+
- Python: 3.10.9
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 2.0.0
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- RoombaAToB-punish-stagnant-bounds
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: RoombaAToB-punish-stagnant-bounds
|
16 |
+
type: RoombaAToB-punish-stagnant-bounds
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -300.75 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **RoombaAToB-punish-stagnant-bounds**
|
25 |
+
This is a trained model of a **PPO** agent playing **RoombaAToB-punish-stagnant-bounds**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e8b2e9240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e8b2e92d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e8b2e9360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e8b2e93f0>", "_build": "<function ActorCriticPolicy._build at 0x7f7e8b2e9480>", "forward": "<function ActorCriticPolicy.forward at 0x7f7e8b2e9510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7e8b2e95a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e8b2e9630>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7e8b2e96c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e8b2e9750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e8b2e97e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e8b2e9870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7e8b2daf00>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVuQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgLSwqFlIwBQ5R0lFKUjARoaWdolGgTKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaAtLCoWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCJLCoWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 204800, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681928439825842716, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAK+ldkJkDKC/O6pAQurTyUF6ZbVB6hYKQgAAyEIAAMhCAADIQgAAyELUKYVCuVvSvwAAyEKC8TBCA93KQQmV3UEAAMhC5x3BQgAAyEIAAMhCcvJ8Qlysur5dIKVBAADIQgAAyEIAAMhCpzCcQgAAyEIAAMhCAADIQoB1iEKpjgHAAADIQgAAyEI49f5BTJjjQXvhMkIAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVaxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITBjNyvY1g8CUhpRSlIwBbJRLu4wBdJRHQIayFxVAAyV1fZQoaAZoCWgPQwiEZWzoZglxwJSGlFKUaBVNLQFoFkdAhrWWy1NQCXV9lChoBmgJaA9DCGoWaHdICIXAlIaUUpRoFUvsaBZHQIa31baAWi11fZQoaAZoCWgPQwjd09Udi+9vwJSGlFKUaBVNLQFoFkdAhsJRqfvnbXV9lChoBmgJaA9DCELr4ctEh2/AlIaUUpRoFU0tAWgWR0CG1IzRhMJydX2UKGgGaAloD0MICHWRQtmRb8CUhpRSlGgVTS0BaBZHQIbYCLwWnCR1fZQoaAZoCWgPQwjFrBdD+VJwwJSGlFKUaBVNLQFoFkdAhtqBaC+UQnV9lChoBmgJaA9DCPoLPWI0Jn/AlIaUUpRoFUtEaBZHQIcrlERaouR1fZQoaAZoCWgPQwgOMPMd/EZvwJSGlFKUaBVNLQFoFkdAhy6UB4lhPXV9lChoBmgJaA9DCCxKCcFqsnDAlIaUUpRoFU0tAWgWR0CHPeTgVGkOdX2UKGgGaAloD0MILINqg5PxcMCUhpRSlGgVTS0BaBZHQIdBXBtUGV11fZQoaAZoCWgPQwiE8GjjCE1vwJSGlFKUaBVNLQFoFkdAh0tADq4YrXV9lChoBmgJaA9DCEEOSpjpNHPAlIaUUpRoFU0tAWgWR0CHTscMmWt2dX2UKGgGaAloD0MIqknwhvRVhcCUhpRSlGgVS/RoFkdAh1yVt4zJp3V9lChoBmgJaA9DCMfVyK50YXHAlIaUUpRoFU0tAWgWR0CHX0KsMiKSdX2UKGgGaAloD0MIPzvguiK5hMCUhpRSlGgVS9poFkdAh2eZ0KZ2IXV9lChoBmgJaA9DCEC+hApOgHHAlIaUUpRoFU0tAWgWR0CHbPmA9V3mdX2UKGgGaAloD0MI73N8tJjwhcCUhpRSlGgVTQABaBZHQId29Ql8gIR1fZQoaAZoCWgPQwgsR8hAXjxwwJSGlFKUaBVNLQFoFkdAh3vte+mFanV9lChoBmgJaA9DCDnsvmN4nXDAlIaUUpRoFU0tAWgWR0CHgTLM9r44dX2UKGgGaAloD0MIJ8Eb0iibcsCUhpRSlGgVTS0BaBZHQIeG4AMlTm51fZQoaAZoCWgPQwhI/fUKi2xwwJSGlFKUaBVNLQFoFkdAh5JzPa+N+HV9lChoBmgJaA9DCO5AnfJo4W/AlIaUUpRoFU0tAWgWR0CHmhTLns9kdX2UKGgGaAloD0MIs7J9yFsDccCUhpRSlGgVTS0BaBZHQIeheY6XBxh1fZQoaAZoCWgPQwhHBOPgUmGDwJSGlFKUaBVLumgWR0CHpwIJqqOtdX2UKGgGaAloD0MIRtCYSZShcMCUhpRSlGgVTS0BaBZHQIen2d/axot1fZQoaAZoCWgPQwjdByC1aVKAwJSGlFKUaBVLU2gWR0CHsC8yvcJudX2UKGgGaAloD0MIK4arAyALcMCUhpRSlGgVTS0BaBZHQIe6st/WlM11fZQoaAZoCWgPQwifyf55GquFwJSGlFKUaBVLymgWR0CHvLuiN83NdX2UKGgGaAloD0MI7Sk5J/ZJcMCUhpRSlGgVTS0BaBZHQIfCVaEBbOh1fZQoaAZoCWgPQwhD5sqgOoiBwJSGlFKUaBVLemgWR0CHx8QcPvrodX2UKGgGaAloD0MIutv10pTxccCUhpRSlGgVTS0BaBZHQIfQ1eQdS2p1fZQoaAZoCWgPQwiAnDBhtGtwwJSGlFKUaBVNLQFoFkdAh95H+6y0KXV9lChoBmgJaA9DCOV8sfciPHDAlIaUUpRoFU0tAWgWR0CH46f+S8radX2UKGgGaAloD0MItI8V/LZig8CUhpRSlGgVS7RoFkdAh+Vf6GgzxnV9lChoBmgJaA9DCDi/YaJBEYDAlIaUUpRoFUtOaBZHQIfmfanJkoZ1fZQoaAZoCWgPQwhmg0wyshVywJSGlFKUaBVNLQFoFkdAh+lWycCo0nV9lChoBmgJaA9DCLxbWaLThITAlIaUUpRoFUuZaBZHQIf2R9Vmz0J1fZQoaAZoCWgPQwi8zRsnBdiCwJSGlFKUaBVLrWgWR0CH/XLFGXoldX2UKGgGaAloD0MII/Weyqn1cMCUhpRSlGgVTS0BaBZHQIhbtZTyaux1fZQoaAZoCWgPQwiUap+Ox8NwwJSGlFKUaBVNLQFoFkdAiF1posZpBXV9lChoBmgJaA9DCB6NQ/3uBoTAlIaUUpRoFUvKaBZHQIhf+nqFAVx1fZQoaAZoCWgPQwihTKPJxUpvwJSGlFKUaBVNLQFoFkdAiGocOTaCc3V9lChoBmgJaA9DCKAVGLI6yH7AlIaUUpRoFUs7aBZHQIhut3W4EwF1fZQoaAZoCWgPQwjMmljgq71vwJSGlFKUaBVNLQFoFkdAiHBFANXo1XV9lChoBmgJaA9DCLPQzmnWeXHAlIaUUpRoFU0tAWgWR0CIcsEFGG21dX2UKGgGaAloD0MIJctJKP0/cMCUhpRSlGgVTS0BaBZHQIh2zABT4tZ1fZQoaAZoCWgPQwge/S/XIj9vwJSGlFKUaBVNLQFoFkdAiI6EMTewcHV9lChoBmgJaA9DCJRoyeMpG3HAlIaUUpRoFU0tAWgWR0CIkBPpIMBqdX2UKGgGaAloD0MI3lm77YJacMCUhpRSlGgVTS0BaBZHQIiSrw+dK/V1fZQoaAZoCWgPQwjUf9b8+JB7wJSGlFKUaBVLGmgWR0CIlTci4axYdX2UKGgGaAloD0MIbXNjesJVccCUhpRSlGgVTS0BaBZHQIiXO9DhLoR1fZQoaAZoCWgPQwi9pgcF5c5/wJSGlFKUaBVLSGgWR0CIm9vBrN4adX2UKGgGaAloD0MIdLSqJZ3pbsCUhpRSlGgVTS0BaBZHQIiqLjR2KVJ1fZQoaAZoCWgPQwg9gEV+PZ9ywJSGlFKUaBVNLQFoFkdAiKvhk7Omi3V9lChoBmgJaA9DCK358ZcWPXzAlIaUUpRoFUsUaBZHQIisNHvttyh1fZQoaAZoCWgPQwhnfjUHCC5vwJSGlFKUaBVNLQFoFkdAiLMvCl7+k3V9lChoBmgJaA9DCBLb3QP0E3DAlIaUUpRoFU0tAWgWR0CIuB3ztkWidX2UKGgGaAloD0MI628JwP9ShcCUhpRSlGgVS7VoFkdAiL58kD6nBXV9lChoBmgJaA9DCN7mjZNCJm/AlIaUUpRoFU0tAWgWR0CIyowMYuTSdX2UKGgGaAloD0MIW5TZIJO6bsCUhpRSlGgVTS0BaBZHQIjQlB8hLXd1fZQoaAZoCWgPQwiztikel/RtwJSGlFKUaBVNLQFoFkdAiNQUYKpkw3V9lChoBmgJaA9DCGtFm+PcZXDAlIaUUpRoFU0tAWgWR0CI2AR8twrEdX2UKGgGaAloD0MIritmhLdMb8CUhpRSlGgVTS0BaBZHQIjjbAHmig11fZQoaAZoCWgPQwj/dtmvOxxwwJSGlFKUaBVNLQFoFkdAiOqz2nKnvXV9lChoBmgJaA9DCKqbi7/teG/AlIaUUpRoFU0tAWgWR0CI8PoJzDGcdX2UKGgGaAloD0MIeSPzyF9KccCUhpRSlGgVTS0BaBZHQIj4PJvHcUN1fZQoaAZoCWgPQwgRGsHG9aWGwJSGlFKUaBVNLAFoFkdAiQY8vEjxC3V9lChoBmgJaA9DCPtbAvBvg4LAlIaUUpRoFUulaBZHQIkME7yQPqd1fZQoaAZoCWgPQwjbTIV4pOZvwJSGlFKUaBVNLQFoFkdAiQ6ki2UjcHV9lChoBmgJaA9DCPs+HCREA3DAlIaUUpRoFU0tAWgWR0CJFMfeUILPdX2UKGgGaAloD0MIjjwQWeQuccCUhpRSlGgVTS0BaBZHQIl/gEB8x9J1fZQoaAZoCWgPQwhZUu4+h1dwwJSGlFKUaBVNLQFoFkdAiYV3sPatcXV9lChoBmgJaA9DCAdgAyJERnHAlIaUUpRoFU0tAWgWR0CJh+qJdjXndX2UKGgGaAloD0MIKNap8n2rcMCUhpRSlGgVTS0BaBZHQImN2QIUrTZ1fZQoaAZoCWgPQwjHEWvxKYJuwJSGlFKUaBVNLQFoFkdAiaRoC2c8T3V9lChoBmgJaA9DCBNgWP58i3DAlIaUUpRoFU0tAWgWR0CJqopvxYq5dX2UKGgGaAloD0MI+b8jKtT3bcCUhpRSlGgVTS0BaBZHQIms/dweeWh1fZQoaAZoCWgPQwgK2uTwSYduwJSGlFKUaBVNLQFoFkdAibLQKBun/HV9lChoBmgJaA9DCBjshm0L6W/AlIaUUpRoFU0tAWgWR0CJw0Bd2PkrdX2UKGgGaAloD0MIbk4lA8B5ccCUhpRSlGgVTS0BaBZHQInGk4R28qZ1fZQoaAZoCWgPQwjaG3xhMkZwwJSGlFKUaBVNLQFoFkdAicftM495hXV9lChoBmgJaA9DCElHOZiN/33AlIaUUpRoFUszaBZHQInMt+LFXJZ1fZQoaAZoCWgPQwgTKc3mcYlvwJSGlFKUaBVNLQFoFkdAicz2z4UN8XV9lChoBmgJaA9DCHBgcqNI5HDAlIaUUpRoFU0tAWgWR0CJ3Cb70nPWdX2UKGgGaAloD0MICTVDqmipcMCUhpRSlGgVTS0BaBZHQIng85fdAPd1fZQoaAZoCWgPQwh/wW7YtpRvwJSGlFKUaBVNLQFoFkdAieiDGT9sJ3V9lChoBmgJaA9DCC7/If12hXDAlIaUUpRoFU0tAWgWR0CJ6M2itaIOdX2UKGgGaAloD0MImWclrXi2bsCUhpRSlGgVTS0BaBZHQIn7aE6DGtJ1fZQoaAZoCWgPQwjBpzl5EdRwwJSGlFKUaBVNLQFoFkdAigGKGUOd5XV9lChoBmgJaA9DCIo6cw+JYG/AlIaUUpRoFU0tAWgWR0CKCkbTc6/7dX2UKGgGaAloD0MIdXXHYpvbbsCUhpRSlGgVTS0BaBZHQIoKlALRa5h1fZQoaAZoCWgPQwhnutdJ/ZmDwJSGlFKUaBVLoWgWR0CKHFuTibUgdX2UKGgGaAloD0MIll6bjZUVcMCUhpRSlGgVTS0BaBZHQIod5gogFHJ1fZQoaAZoCWgPQwgKEAUzphVvwJSGlFKUaBVNLQFoFkdAiiQPaURnOHV9lChoBmgJaA9DCDLH8q56OG7AlIaUUpRoFU0tAWgWR0CKKwQkona4dX2UKGgGaAloD0MIXHLcKZ2bcMCUhpRSlGgVTS0BaBZHQIo6vs5XEIh1fZQoaAZoCWgPQwjZfFwbarZwwJSGlFKUaBVNLQFoFkdAijvxGlQ/HHV9lChoBmgJaA9DCD0LQnmfiG7AlIaUUpRoFU0tAWgWR0CKP+IcBEKFdX2UKGgGaAloD0MIBB2taslab8CUhpRSlGgVTS0BaBZHQIpFuFJxvNx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1120, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.5, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (272 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -300.7537369977473, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T11:35:09.134964"}
|