Upload model to Hugging Face
Browse files- PPO-mid-goal.zip +2 -2
- PPO-mid-goal/data +20 -20
- PPO-mid-goal/policy.optimizer.pth +1 -1
- PPO-mid-goal/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
PPO-mid-goal.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b8e52239404b04a2ea3d1ba2ce8f0079ea09360cb5f87610f7ac1a80692c5f2
|
3 |
+
size 150416
|
PPO-mid-goal/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
@@ -43,12 +43,12 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 4,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -67,16 +67,16 @@
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -0.
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
"n_steps": 2048,
|
81 |
"gamma": 0.99,
|
82 |
"gae_lambda": 0.5,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7efce7bf5240>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efce7bf52d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efce7bf5360>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efce7bf53f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7efce7bf5480>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7efce7bf5510>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7efce7bf55a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efce7bf5630>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7efce7bf56c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efce7bf5750>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efce7bf57e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7efce7bf5870>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7efce7be1e00>"
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 4,
|
46 |
+
"num_timesteps": 106496,
|
47 |
+
"_total_timesteps": 100000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1681944438387488333,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAACvKIEM2a1M/cby7QgAAyEIAAMhCAADIQnxriUIAAMhCAADIQv/9tELYz1ZDLLjzvgAAyEIAAMhCbgUUQrYsPkJCysdCAADIQj9HhEIpmPRBCsQUQ26GET8fiqJCAADIQgAAyELI2k9CkPaPQgAAyEIAAMhCQsGrQs4kJ0P9gKM+AADIQgAAyEIAAMhCZAK2QgAAyEIAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.0649599999999999,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQWFQptF6VkCUhpRSlIwBbJRNLQGMAXSUR0BzRAo2GZeBdX2UKGgGaAloD0MIV7Wkoxx+X0CUhpRSlGgVTS0BaBZHQHNKd52Qnx91fZQoaAZoCWgPQwjkZrgBnxRTQJSGlFKUaBVNLQFoFkdAc1kRV6u4gHV9lChoBmgJaA9DCBQktrsHz1dAlIaUUpRoFU0tAWgWR0BzbbsTnJT3dX2UKGgGaAloD0MIIzDWNzCVWkCUhpRSlGgVTS0BaBZHQHOAdCu2ZzB1fZQoaAZoCWgPQwh/L4UHTXtgQJSGlFKUaBVNLQFoFkdAc4g82Jiy6nV9lChoBmgJaA9DCJ/HKM88R2FAlIaUUpRoFU0tAWgWR0Bzl59c8kledX2UKGgGaAloD0MIinYVUv6IhMCUhpRSlGgVS+poFkdAc51/ATIvJ3V9lChoBmgJaA9DCKvnpPeNX2NAlIaUUpRoFU0tAWgWR0Bzt7rMTviMdX2UKGgGaAloD0MIlfPF3ou0VECUhpRSlGgVTS0BaBZHQHO/udK/VRV1fZQoaAZoCWgPQwipiNNJtvteQJSGlFKUaBVNLQFoFkdAc85ldkauOnV9lChoBmgJaA9DCIuLo3ITlFdAlIaUUpRoFU0tAWgWR0Bz1H9DQZ4wdX2UKGgGaAloD0MI7pOjAFEhVkCUhpRSlGgVTS0BaBZHQHP4MdgfEGZ1fZQoaAZoCWgPQwjSUQ5mE/hgQJSGlFKUaBVNLQFoFkdAdAB2AXl8xHV9lChoBmgJaA9DCJfHmpFBTVNAlIaUUpRoFU0tAWgWR0B0DqInBtUGdX2UKGgGaAloD0MIbuAO1CnmUkCUhpRSlGgVTS0BaBZHQHQUXk92X9l1fZQoaAZoCWgPQwiPwvUoXMtSQJSGlFKUaBVNLQFoFkdAdNKynUDuB3V9lChoBmgJaA9DCIV4JF4efmNAlIaUUpRoFU0tAWgWR0B02log3cYZdX2UKGgGaAloD0MIEf3a+mnYYECUhpRSlGgVTS0BaBZHQHTndI9TxXp1fZQoaAZoCWgPQwiQ2Vn0Ti9ZQJSGlFKUaBVNLQFoFkdAdO49ytFKCnV9lChoBmgJaA9DCGnGounsg1NAlIaUUpRoFU0tAWgWR0B1EeVgQYk3dX2UKGgGaAloD0MIx6ATQgeQZECUhpRSlGgVTS0BaBZHQHUal67dzn11fZQoaAZoCWgPQwhXJCao4fVWQJSGlFKUaBVNLQFoFkdAdSvaQV9F4XV9lChoBmgJaA9DCG7Ek93MpVtAlIaUUpRoFU0tAWgWR0B1MVedCmdidX2UKGgGaAloD0MI/7J78rBmYkCUhpRSlGgVTS0BaBZHQHVTCmQ8wHt1fZQoaAZoCWgPQwivCz84H81lQJSGlFKUaBVNLQFoFkdAdVtpEQXhwXV9lChoBmgJaA9DCFBR9Ssdx2FAlIaUUpRoFU0tAWgWR0B1a/ps41gqdX2UKGgGaAloD0MIHmtGBjlEZUCUhpRSlGgVTS0BaBZHQHVx7IYFaB91fZQoaAZoCWgPQwjMCG8PwmpiQJSGlFKUaBVNLQFoFkdAdY27cwg1WXV9lChoBmgJaA9DCDM1Cd6QLV1AlIaUUpRoFU0tAWgWR0B1k1jVhCtzdX2UKGgGaAloD0MIC9XNxV+1ecCUhpRSlGgVTQwBaBZHQHWap/oaDPJ1fZQoaAZoCWgPQwgk8l1KXXFYQJSGlFKUaBVNLQFoFkdAdaUMN+b3GnV9lChoBmgJaA9DCN/EkJxMK15AlIaUUpRoFU0tAWgWR0B1xprk8zRAdX2UKGgGaAloD0MIArnEkYfoYUCUhpRSlGgVTS0BaBZHQHXO4B/7SAp1fZQoaAZoCWgPQwjp7c9FQyhiQJSGlFKUaBVNLQFoFkdAddgh1DBuXXV9lChoBmgJaA9DCEVlw5rKlFdAlIaUUpRoFU0tAWgWR0B15ViBoVVQdX2UKGgGaAloD0MImUo/4eyhV0CUhpRSlGgVTS0BaBZHQHYI+kk8ifR1fZQoaAZoCWgPQwjjx5i7FkZgQJSGlFKUaBVNLQFoFkdAdhHCyyD7InV9lChoBmgJaA9DCN0Gtd/axGZAlIaUUpRoFU0tAWgWR0B2GuGqPwNLdX2UKGgGaAloD0MI97AXClg/Z0CUhpRSlGgVTS0BaBZHQHYpDG1hLGt1fZQoaAZoCWgPQwjPoQxVMYxbwJSGlFKUaBVNLQFoFkdAdkxGIsRQJ3V9lChoBmgJaA9DCGRZMPFHJF/AlIaUUpRoFU0tAWgWR0B2VC/oJRfndX2UKGgGaAloD0MIysNCrWlxXUCUhpRSlGgVTS0BaBZHQHZdpTqB3A51fZQoaAZoCWgPQwiTcCGPYHlmQJSGlFKUaBVNLQFoFkdAdmzhllK9PHV9lChoBmgJaA9DCE6YMJqVLWFAlIaUUpRoFU0tAWgWR0B3HRBQemvXdX2UKGgGaAloD0MIkNyadJtFg8CUhpRSlGgVTRIBaBZHQHcfLJKaodd1fZQoaAZoCWgPQwjle0YitAVmQJSGlFKUaBVNLQFoFkdAdy1KwpvxY3V9lChoBmgJaA9DCHP2zmir82BAlIaUUpRoFU0tAWgWR0B3Oenk1dgOdX2UKGgGaAloD0MIZJP8iN85YkCUhpRSlGgVTS0BaBZHQHdZpLAYYSB1fZQoaAZoCWgPQwiDpiVWRnBbQJSGlFKUaBVNLQFoFkdAd1vfAKv3anV9lChoBmgJaA9DCCRHOgPDgYDAlIaUUpRoFUutaBZHQHdcKOo5xR51fZQoaAZoCWgPQwh3oblOYzN1wJSGlFKUaBVNCQFoFkdAd1+LF4s3AHV9lChoBmgJaA9DCCVbXU6psoDAlIaUUpRoFU0QAWgWR0B3gPUH6dlNdX2UKGgGaAloD0MIonvWNdpiZUCUhpRSlGgVTS0BaBZHQHeEem3vx6R1fZQoaAZoCWgPQwhuFFlrKF5aQJSGlFKUaBVNLQFoFkdAd4bMpPRAr3V9lChoBmgJaA9DCMx5xr7kMGtAlIaUUpRoFU0tAWgWR0B3i35bhWHUdX2UKGgGaAloD0MIRYR/EbTWY0CUhpRSlGgVTS0BaBZHQHe3/CAMDwJ1fZQoaAZoCWgPQwgabsDnh9JkQJSGlFKUaBVNLQFoFkdAd7uF4cFQmHV9lChoBmgJaA9DCMGLvoI0UmNAlIaUUpRoFU0tAWgWR0B3vYzsQd0adX2UKGgGaAloD0MIvVXXoZqXYUCUhpRSlGgVTS0BaBZHQHfBLe67NB51fZQoaAZoCWgPQwgFFOrpo89lQJSGlFKUaBVNLQFoFkdAd+ZeTV2A5XV9lChoBmgJaA9DCLmMmxpob2VAlIaUUpRoFU0tAWgWR0B36LEm6XjVdX2UKGgGaAloD0MInBn9aDjzZ0CUhpRSlGgVTS0BaBZHQHfqkDIRywR1fZQoaAZoCWgPQwjjN4WViltiQJSGlFKUaBVNLQFoFkdAd+4qwyIpIHV9lChoBmgJaA9DCGd9yjHZv2VAlIaUUpRoFU0tAWgWR0B4EmZH/cWTdX2UKGgGaAloD0MIxXJLqyHVZECUhpRSlGgVTS0BaBZHQHgV3n2ZiNN1fZQoaAZoCWgPQwi5Us+C0JtjQJSGlFKUaBVNLQFoFkdAeBfGW2PT5XV9lChoBmgJaA9DCPfkYaHWs2BAlIaUUpRoFU0tAWgWR0B4HCWldkaudX2UKGgGaAloD0MIYFlpUgpaYkCUhpRSlGgVTS0BaBZHQHhGSydFvyd1fZQoaAZoCWgPQwiQSxx5IMotQJSGlFKUaBVNLQFoFkdAeEgIX0oSc3V9lChoBmgJaA9DCMaoa+398GJAlIaUUpRoFU0tAWgWR0B4Saliz9jxdX2UKGgGaAloD0MIPnWsUnrnZUCUhpRSlGgVTS0BaBZHQHhMvCAMDwJ1fZQoaAZoCWgPQwjy6hwDsltCwJSGlFKUaBVNLQFoFkdAeR7ngpBomHV9lChoBmgJaA9DCNYcIJgjNnHAlIaUUpRoFU0tAWgWR0B5IkFdLQHBdX2UKGgGaAloD0MINWJmn8eUY0CUhpRSlGgVTS0BaBZHQHkkQHE/B311fZQoaAZoCWgPQwjrOlRTkstiQJSGlFKUaBVNLQFoFkdAeSmH+6y0KXV9lChoBmgJaA9DCGsRUUzeC2VAlIaUUpRoFU0tAWgWR0B5URYLb5/LdX2UKGgGaAloD0MIIEWduYcMXUCUhpRSlGgVTS0BaBZHQHlUX0TURWd1fZQoaAZoCWgPQwj+tFGdDihmQJSGlFKUaBVNLQFoFkdAeVcI6bONYXV9lChoBmgJaA9DCBJMNbPWDHrAlIaUUpRoFU0gAWgWR0B5WhXr+o9+dX2UKGgGaAloD0MI4ba28DwrgcCUhpRSlGgVTQUBaBZHQHmKNrKvFFV1fZQoaAZoCWgPQwhyo8haQ79CQJSGlFKUaBVNLQFoFkdAeYsm3OObRXV9lChoBmgJaA9DCNC2mnVG7WBAlIaUUpRoFU0tAWgWR0B5jUZVGTcJdX2UKGgGaAloD0MIYCAIkCHyYkCUhpRSlGgVTS0BaBZHQHmSVnZkCmx1fZQoaAZoCWgPQwitM74vrrdjQJSGlFKUaBVNLQFoFkdAebcHPeHi33V9lChoBmgJaA9DCJNRZRj3qmhAlIaUUpRoFU0tAWgWR0B5uF07r9l3dX2UKGgGaAloD0MITyLCv4hZZECUhpRSlGgVTS0BaBZHQHm6hYFJQLx1fZQoaAZoCWgPQwgo84++SXRtQJSGlFKUaBVNLQFoFkdAeb5Sv1UVBXV9lChoBmgJaA9DCDZzSGohomJAlIaUUpRoFU0tAWgWR0B54LB68g6mdX2UKGgGaAloD0MIQE8DBsk1ZkCUhpRSlGgVTS0BaBZHQHnhrKJVKf51fZQoaAZoCWgPQwhcOXtntM9lQJSGlFKUaBVNLQFoFkdAeePlsguAZ3V9lChoBmgJaA9DCHCX/brT32RAlIaUUpRoFU0tAWgWR0B558DU3GXHdX2UKGgGaAloD0MIll0wuGaMZUCUhpRSlGgVTS0BaBZHQHoNJsO5J9R1fZQoaAZoCWgPQwjuW60TF+5jQJSGlFKUaBVNLQFoFkdAeg771ZkkKXV9lChoBmgJaA9DCIS7s3bbp1ZAlIaUUpRoFU0tAWgWR0B6EYWtU4rCdX2UKGgGaAloD0MIMunvpfAqZkCUhpRSlGgVTS0BaBZHQHoVcbNr0rd1fZQoaAZoCWgPQwiqu7ILhkpmQJSGlFKUaBVNLQFoFkdAekCTgVGkOHV9lChoBmgJaA9DCHDurx73bQJAlIaUUpRoFU0tAWgWR0B6Qx6ol2NedX2UKGgGaAloD0MIxNFVujvvZUCUhpRSlGgVTS0BaBZHQHpHs/+sHSp1fZQoaAZoCWgPQwhgqwSLQ+9kQJSGlFKUaBVNLQFoFkdAek9QZn+Q2nVlLg=="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 750,
|
80 |
"n_steps": 2048,
|
81 |
"gamma": 0.99,
|
82 |
"gae_lambda": 0.5,
|
PPO-mid-goal/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 90105
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c585fd4c74f33ba1955b6e1120f00e082086a24589e506e7f0ed14f0dd91a0a
|
3 |
size 90105
|
PPO-mid-goal/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44417
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29f67a2479714401ed6a85c1c9caa1bd6418db0864706440043b427c41bcd08f
|
3 |
size 44417
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: RoombaAToB-mid-goal
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: RoombaAToB-mid-goal
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 125.70 +/- 0.00
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd6babf1240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd6babf12d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd6babf1360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd6babf13f0>", "_build": "<function ActorCriticPolicy._build at 0x7fd6babf1480>", "forward": "<function ActorCriticPolicy.forward at 0x7fd6babf1510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd6babf15a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd6babf1630>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd6babf16c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd6babf1750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd6babf17e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd6babf1870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd6babde940>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVuQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgLSwqFlIwBQ5R0lFKUjARoaWdolGgTKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaAtLCoWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCJLCoWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 57344, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681944095734960325, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAACwIc0Nx0Dm/aVVVQgAAyELc8idCiq85Qp/bfkIAAMhCAADIQpXtikLB9zRDIhyyvwAAyEIAAMhCLBjFQgAAyEIAAMhCAADIQgAAyEIAAMhCMm2NQ70lGcAAAMhCMpI/QrIZGkK4YjBCAADIQgAAyEIAAMhCAADIQq9z/0LGvATAAADIQr0OpkJFr1tCyyqAQgAAyEIAAMhCcVi9QgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVI7J4l7vgsCUhpRSlIwBbJRL0owBdJRHQGKxXWFvhqF1fZQoaAZoCWgPQwhIowInW/J6wJSGlFKUaBVLq2gWR0Bi3phx5s0pdX2UKGgGaAloD0MIeVxUiwh8esCUhpRSlGgVS4toFkdAYuIDVYp2EHV9lChoBmgJaA9DCB+F61E4kXvAlIaUUpRoFUuwaBZHQGLoxwhnrY51fZQoaAZoCWgPQwg1m8dhMBN8wJSGlFKUaBVLn2gWR0BjKCIJqqOtdX2UKGgGaAloD0MINxrAWyA5d8CUhpRSlGgVS7VoFkdAYy9AAQxvenV9lChoBmgJaA9DCCkg7X8A9nvAlIaUUpRoFUudaBZHQGMwF0o0ALl1fZQoaAZoCWgPQwh9sffiC4tkQJSGlFKUaBVNLQFoFkdAYzFcafjCHnV9lChoBmgJaA9DCH0geedQgoLAlIaUUpRoFUtyaBZHQGNafcer+5x1fZQoaAZoCWgPQwjOUNzxJo16wJSGlFKUaBVLnWgWR0Bjacd7v5P/dX2UKGgGaAloD0MIB14td6ZVeMCUhpRSlGgVS5xoFkdAY2rwyZa3Z3V9lChoBmgJaA9DCCk/qfZph4PAlIaUUpRoFUt3aBZHQGOZcbrC3w11fZQoaAZoCWgPQwiHGK951QViQJSGlFKUaBVNLQFoFkdAY54eUY8+zXV9lChoBmgJaA9DCExtqYOcAILAlIaUUpRoFUvPaBZHQGOutdzGPxR1fZQoaAZoCWgPQwihMCjTKPqBwJSGlFKUaBVLfWgWR0Bj05fUnXumdX2UKGgGaAloD0MIEp87wX7OgsCUhpRSlGgVS4xoFkdAY9YnwXqJM3V9lChoBmgJaA9DCBFxcyoZPktAlIaUUpRoFU0tAWgWR0Bj59lK9PDYdX2UKGgGaAloD0MILcxCO4d5g8CUhpRSlGgVS61oFkdAY/FayKNyYHV9lChoBmgJaA9DCNZVgVqMtHrAlIaUUpRoFUuaaBZHQGQIB5X2dup1fZQoaAZoCWgPQwjiBKbTeih7wJSGlFKUaBVLmmgWR0BkCkRlHz6KdX2UKGgGaAloD0MI9bwbC0omfMCUhpRSlGgVS3VoFkdAZAyKhL5AQnV9lChoBmgJaA9DCC4B+KeUrnzAlIaUUpRoFUskaBZHQGQWNOdoWYZ1fZQoaAZoCWgPQwi1+X/V0SF5wJSGlFKUaBVLmGgWR0BkJkhs67uldX2UKGgGaAloD0MIA+li0wpbg8CUhpRSlGgVS3FoFkdAZDUFJxvNvHV9lChoBmgJaA9DCEbsE0Cx63rAlIaUUpRoFUuCaBZHQGQ4F0YCQtB1fZQoaAZoCWgPQwjfNehLb8t8wJSGlFKUaBVLLWgWR0BkOFuLrHENdX2UKGgGaAloD0MIQzhm2bNFgsCUhpRSlGgVS6poFkdAZFriWmgrY3V9lChoBmgJaA9DCEDAWrVrvIHAlIaUUpRoFUuLaBZHQGRzQhW5pal1fZQoaAZoCWgPQwhHPq94qh17wJSGlFKUaBVLi2gWR0Bkdpn8KohqdX2UKGgGaAloD0MIrAFKQ80FgsCUhpRSlGgVS4RoFkdAZd7ZvDP4VXV9lChoBmgJaA9DCM/ZAkKLMYPAlIaUUpRoFUvhaBZHQGXj5zPrv9d1fZQoaAZoCWgPQwjwvioXagV7wJSGlFKUaBVLhmgWR0Bl9RAbADaHdX2UKGgGaAloD0MIJqq3BlZqg8CUhpRSlGgVS4poFkdAZhTJ3gUDdXV9lChoBmgJaA9DCDUlWYdDbIPAlIaUUpRoFUvtaBZHQGYXsCT2WY51fZQoaAZoCWgPQwhCtcGJSACDwJSGlFKUaBVL6WgWR0BmMv225QP7dX2UKGgGaAloD0MIl1eut40Dg8CUhpRSlGgVS7RoFkdAZjZfR/mT1XV9lChoBmgJaA9DCG5PkNhuvXjAlIaUUpRoFUtxaBZHQGZrFPSDyvt1fZQoaAZoCWgPQwhGJAotK9iBwJSGlFKUaBVL4mgWR0Bmd6jk+5e7dX2UKGgGaAloD0MIYyXmWQmcfMCUhpRSlGgVSypoFkdAZoCsA/9pAXV9lChoBmgJaA9DCCEdHsLYLIPAlIaUUpRoFUuraBZHQGaFOOCGvfV1fZQoaAZoCWgPQwgLYMrAARpZQJSGlFKUaBVNLQFoFkdAZp6QOFxn4HV9lChoBmgJaA9DCEhuTbqNMIPAlIaUUpRoFUvYaBZHQGbiVRtP5591fZQoaAZoCWgPQwgX1LfMaZ9gQJSGlFKUaBVNLQFoFkdAZwIr08NhE3V9lChoBmgJaA9DCC7m54am1lhAlIaUUpRoFU0tAWgWR0BnD9EVnEl3dX2UKGgGaAloD0MIkx6GVieFXUCUhpRSlGgVTS0BaBZHQGcqD1PFefJ1fZQoaAZoCWgPQwhruwm+qa16wJSGlFKUaBVLsGgWR0BnNgSOBDohdX2UKGgGaAloD0MIQMIwYAl3esCUhpRSlGgVS71oFkdAZ2H+1Bt1p3V9lChoBmgJaA9DCCP3dHXHHoPAlIaUUpRoFUuoaBZHQGd8LQw9JSR1fZQoaAZoCWgPQwieRe9UwJZQQJSGlFKUaBVNLQFoFkdAZ4ZMhX8wYnV9lChoBmgJaA9DCHjQ7Lo3lWFAlIaUUpRoFU0tAWgWR0Bnnjq+rU9ZdX2UKGgGaAloD0MIm44AbtabesCUhpRSlGgVS71oFkdAZ6M9XcQAdXV9lChoBmgJaA9DCDlGskco6nDAlIaUUpRoFUs5aBZHQGexlWfbsWx1fZQoaAZoCWgPQwjFAfT73oiCwJSGlFKUaBVLw2gWR0BntTcIqsltdX2UKGgGaAloD0MIyAiocERtcMCUhpRSlGgVS1VoFkdAZ9b+FUQ043V9lChoBmgJaA9DCAe2SrA4DlZAlIaUUpRoFU0tAWgWR0Bn6GvUz9CNdX2UKGgGaAloD0MIWybD8Zwpg8CUhpRSlGgVS/VoFkdAZ/Ixt52Qn3V9lChoBmgJaA9DCDkn9tA+yFXAlIaUUpRoFU0tAWgWR0BoKgLgGbCrdX2UKGgGaAloD0MIbTttjcgFg8CUhpRSlGgVTQoBaBZHQGhDf/WDpTx1fZQoaAZoCWgPQwhbQGg9vDV/wJSGlFKUaBVLQWgWR0BoRaTOgQHzdX2UKGgGaAloD0MItYe9UMDAYECUhpRSlGgVTS0BaBZHQGhl0zKs+3Z1fZQoaAZoCWgPQwhgBfhuczJhQJSGlFKUaBVNLQFoFkdAaHJsBQvYe3V9lChoBmgJaA9DCJ28yAT8SHrAlIaUUpRoFUupaBZHQGiSTewcHW11fZQoaAZoCWgPQwgJ/reSHQBSQJSGlFKUaBVNLQFoFkdAaNA9QGfPHHV9lChoBmgJaA9DCDuoxHVMrXrAlIaUUpRoFUuRaBZHQGjWP8Q7LdN1fZQoaAZoCWgPQwiU+NwJ9tpkQJSGlFKUaBVNLQFoFkdAaPIv5gw483V9lChoBmgJaA9DCCkF3V7St1NAlIaUUpRoFU0tAWgWR0Bo+osf7rLRdX2UKGgGaAloD0MIrIvbaGBwgsCUhpRSlGgVS5BoFkdAaQsdV/+bVnV9lChoBmgJaA9DCG9JDti1bYPAlIaUUpRoFUu4aBZHQGpbfF72L511fZQoaAZoCWgPQwi7JTlg1+d6wJSGlFKUaBVLqGgWR0BqXpkkKNQ1dX2UKGgGaAloD0MI4Zumz45YesCUhpRSlGgVS5poFkdAamiEjgQ6IXV9lChoBmgJaA9DCHIycasgXlJAlIaUUpRoFU0tAWgWR0BqcXAGjbi7dX2UKGgGaAloD0MI2xfQC7fQgsCUhpRSlGgVS/FoFkdAarfDlYEGJXV9lChoBmgJaA9DCHEFFOqpPHBAlIaUUpRoFU0tAWgWR0Bqz2DYh+vydX2UKGgGaAloD0MI7GrylNUCXECUhpRSlGgVTS0BaBZHQGraPoV2zOZ1fZQoaAZoCWgPQwjzkZT0MMVbQJSGlFKUaBVNLQFoFkdAauM0fHPu5XV9lChoBmgJaA9DCPrRcMocXX3AlIaUUpRoFUuhaBZHQGsjNaIN3GJ1fZQoaAZoCWgPQwgX2GMiJSV5wJSGlFKUaBVLw2gWR0BrKHmHP/rCdX2UKGgGaAloD0MIJzJzgcuAVkCUhpRSlGgVTS0BaBZHQGstTl90A951fZQoaAZoCWgPQwgS3EjZolhpQJSGlFKUaBVNLQFoFkdAa0JB7eEZi3V9lChoBmgJaA9DCOCGGK8ZlILAlIaUUpRoFUuIaBZHQGtlwkX1rZd1fZQoaAZoCWgPQwhZ/KawkgCDwJSGlFKUaBVNCQFoFkdAa3EwevIOpnV9lChoBmgJaA9DCHuFBffDToLAlIaUUpRoFU0fAWgWR0BrfQFiay8jdX2UKGgGaAloD0MIB3x+GKE/Z0CUhpRSlGgVTS0BaBZHQGuFE3bVSXN1fZQoaAZoCWgPQwhyo8haQ6peQJSGlFKUaBVNLQFoFkdAa9SGD+R5knV9lChoBmgJaA9DCAxaSMAosnNAlIaUUpRoFU0tAWgWR0Br43Z9NN8FdX2UKGgGaAloD0MIKSFYVW/rcECUhpRSlGgVTS0BaBZHQGv2Ifr8iwB1fZQoaAZoCWgPQwgpCB7f3mBzQJSGlFKUaBVNLQFoFkdAa/9JVbRne3V9lChoBmgJaA9DCHAofLaOVWRAlIaUUpRoFU0tAWgWR0BsVhegL7XQdX2UKGgGaAloD0MIT+W0pyTWd8CUhpRSlGgVS9VoFkdAbFk2MsH0LHV9lChoBmgJaA9DCJyopbkVVGdAlIaUUpRoFU0tAWgWR0BsZGiL2pQ2dX2UKGgGaAloD0MI5dTOMDXWZUCUhpRSlGgVTS0BaBZHQGxz8aOxSpB1fZQoaAZoCWgPQwjIXYQpCs93wJSGlFKUaBVLymgWR0BssTwlSjxkdX2UKGgGaAloD0MIKgDGM+jDYUCUhpRSlGgVTS0BaBZHQGzb9fsu3+d1fZQoaAZoCWgPQwjDuvHuSJNhQJSGlFKUaBVNLQFoFkdAbOwpOvdM03V9lChoBmgJaA9DCLB0PjxLylxAlIaUUpRoFU0tAWgWR0Bs/kYAKfFrdX2UKGgGaAloD0MIHXbfMbxPdMCUhpRSlGgVS0JoFkdAbRkLbYbsGHV9lChoBmgJaA9DCGn9LQE4HYPAlIaUUpRoFUueaBZHQG0pGucMEzR1fZQoaAZoCWgPQwgS2JyDZ+9pQJSGlFKUaBVNLQFoFkdAbS7eD3/PxHV9lChoBmgJaA9DCE6bcRqiHG1AlIaUUpRoFU0tAWgWR0BtUiYu01IidX2UKGgGaAloD0MIWtjTDn/jgcCUhpRSlGgVS+BoFkdAbWq5CngpB3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 690, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.5, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efce7bf5240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efce7bf52d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efce7bf5360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efce7bf53f0>", "_build": "<function ActorCriticPolicy._build at 0x7efce7bf5480>", "forward": "<function ActorCriticPolicy.forward at 0x7efce7bf5510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efce7bf55a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efce7bf5630>", "_predict": "<function ActorCriticPolicy._predict at 0x7efce7bf56c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efce7bf5750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efce7bf57e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efce7bf5870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efce7be1e00>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVuQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgLSwqFlIwBQ5R0lFKUjARoaWdolGgTKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaAtLCoWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCJLCoWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 106496, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681944438387488333, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAACvKIEM2a1M/cby7QgAAyEIAAMhCAADIQnxriUIAAMhCAADIQv/9tELYz1ZDLLjzvgAAyEIAAMhCbgUUQrYsPkJCysdCAADIQj9HhEIpmPRBCsQUQ26GET8fiqJCAADIQgAAyELI2k9CkPaPQgAAyEIAAMhCQsGrQs4kJ0P9gKM+AADIQgAAyEIAAMhCZAK2QgAAyEIAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQWFQptF6VkCUhpRSlIwBbJRNLQGMAXSUR0BzRAo2GZeBdX2UKGgGaAloD0MIV7Wkoxx+X0CUhpRSlGgVTS0BaBZHQHNKd52Qnx91fZQoaAZoCWgPQwjkZrgBnxRTQJSGlFKUaBVNLQFoFkdAc1kRV6u4gHV9lChoBmgJaA9DCBQktrsHz1dAlIaUUpRoFU0tAWgWR0BzbbsTnJT3dX2UKGgGaAloD0MIIzDWNzCVWkCUhpRSlGgVTS0BaBZHQHOAdCu2ZzB1fZQoaAZoCWgPQwh/L4UHTXtgQJSGlFKUaBVNLQFoFkdAc4g82Jiy6nV9lChoBmgJaA9DCJ/HKM88R2FAlIaUUpRoFU0tAWgWR0Bzl59c8kledX2UKGgGaAloD0MIinYVUv6IhMCUhpRSlGgVS+poFkdAc51/ATIvJ3V9lChoBmgJaA9DCKvnpPeNX2NAlIaUUpRoFU0tAWgWR0Bzt7rMTviMdX2UKGgGaAloD0MIlfPF3ou0VECUhpRSlGgVTS0BaBZHQHO/udK/VRV1fZQoaAZoCWgPQwipiNNJtvteQJSGlFKUaBVNLQFoFkdAc85ldkauOnV9lChoBmgJaA9DCIuLo3ITlFdAlIaUUpRoFU0tAWgWR0Bz1H9DQZ4wdX2UKGgGaAloD0MI7pOjAFEhVkCUhpRSlGgVTS0BaBZHQHP4MdgfEGZ1fZQoaAZoCWgPQwjSUQ5mE/hgQJSGlFKUaBVNLQFoFkdAdAB2AXl8xHV9lChoBmgJaA9DCJfHmpFBTVNAlIaUUpRoFU0tAWgWR0B0DqInBtUGdX2UKGgGaAloD0MIbuAO1CnmUkCUhpRSlGgVTS0BaBZHQHQUXk92X9l1fZQoaAZoCWgPQwiPwvUoXMtSQJSGlFKUaBVNLQFoFkdAdNKynUDuB3V9lChoBmgJaA9DCIV4JF4efmNAlIaUUpRoFU0tAWgWR0B02log3cYZdX2UKGgGaAloD0MIEf3a+mnYYECUhpRSlGgVTS0BaBZHQHTndI9TxXp1fZQoaAZoCWgPQwiQ2Vn0Ti9ZQJSGlFKUaBVNLQFoFkdAdO49ytFKCnV9lChoBmgJaA9DCGnGounsg1NAlIaUUpRoFU0tAWgWR0B1EeVgQYk3dX2UKGgGaAloD0MIx6ATQgeQZECUhpRSlGgVTS0BaBZHQHUal67dzn11fZQoaAZoCWgPQwhXJCao4fVWQJSGlFKUaBVNLQFoFkdAdSvaQV9F4XV9lChoBmgJaA9DCG7Ek93MpVtAlIaUUpRoFU0tAWgWR0B1MVedCmdidX2UKGgGaAloD0MI/7J78rBmYkCUhpRSlGgVTS0BaBZHQHVTCmQ8wHt1fZQoaAZoCWgPQwivCz84H81lQJSGlFKUaBVNLQFoFkdAdVtpEQXhwXV9lChoBmgJaA9DCFBR9Ssdx2FAlIaUUpRoFU0tAWgWR0B1a/ps41gqdX2UKGgGaAloD0MIHmtGBjlEZUCUhpRSlGgVTS0BaBZHQHVx7IYFaB91fZQoaAZoCWgPQwjMCG8PwmpiQJSGlFKUaBVNLQFoFkdAdY27cwg1WXV9lChoBmgJaA9DCDM1Cd6QLV1AlIaUUpRoFU0tAWgWR0B1k1jVhCtzdX2UKGgGaAloD0MIC9XNxV+1ecCUhpRSlGgVTQwBaBZHQHWap/oaDPJ1fZQoaAZoCWgPQwgk8l1KXXFYQJSGlFKUaBVNLQFoFkdAdaUMN+b3GnV9lChoBmgJaA9DCN/EkJxMK15AlIaUUpRoFU0tAWgWR0B1xprk8zRAdX2UKGgGaAloD0MIArnEkYfoYUCUhpRSlGgVTS0BaBZHQHXO4B/7SAp1fZQoaAZoCWgPQwjp7c9FQyhiQJSGlFKUaBVNLQFoFkdAddgh1DBuXXV9lChoBmgJaA9DCEVlw5rKlFdAlIaUUpRoFU0tAWgWR0B15ViBoVVQdX2UKGgGaAloD0MImUo/4eyhV0CUhpRSlGgVTS0BaBZHQHYI+kk8ifR1fZQoaAZoCWgPQwjjx5i7FkZgQJSGlFKUaBVNLQFoFkdAdhHCyyD7InV9lChoBmgJaA9DCN0Gtd/axGZAlIaUUpRoFU0tAWgWR0B2GuGqPwNLdX2UKGgGaAloD0MI97AXClg/Z0CUhpRSlGgVTS0BaBZHQHYpDG1hLGt1fZQoaAZoCWgPQwjPoQxVMYxbwJSGlFKUaBVNLQFoFkdAdkxGIsRQJ3V9lChoBmgJaA9DCGRZMPFHJF/AlIaUUpRoFU0tAWgWR0B2VC/oJRfndX2UKGgGaAloD0MIysNCrWlxXUCUhpRSlGgVTS0BaBZHQHZdpTqB3A51fZQoaAZoCWgPQwiTcCGPYHlmQJSGlFKUaBVNLQFoFkdAdmzhllK9PHV9lChoBmgJaA9DCE6YMJqVLWFAlIaUUpRoFU0tAWgWR0B3HRBQemvXdX2UKGgGaAloD0MIkNyadJtFg8CUhpRSlGgVTRIBaBZHQHcfLJKaodd1fZQoaAZoCWgPQwjle0YitAVmQJSGlFKUaBVNLQFoFkdAdy1KwpvxY3V9lChoBmgJaA9DCHP2zmir82BAlIaUUpRoFU0tAWgWR0B3Oenk1dgOdX2UKGgGaAloD0MIZJP8iN85YkCUhpRSlGgVTS0BaBZHQHdZpLAYYSB1fZQoaAZoCWgPQwiDpiVWRnBbQJSGlFKUaBVNLQFoFkdAd1vfAKv3anV9lChoBmgJaA9DCCRHOgPDgYDAlIaUUpRoFUutaBZHQHdcKOo5xR51fZQoaAZoCWgPQwh3oblOYzN1wJSGlFKUaBVNCQFoFkdAd1+LF4s3AHV9lChoBmgJaA9DCCVbXU6psoDAlIaUUpRoFU0QAWgWR0B3gPUH6dlNdX2UKGgGaAloD0MIonvWNdpiZUCUhpRSlGgVTS0BaBZHQHeEem3vx6R1fZQoaAZoCWgPQwhuFFlrKF5aQJSGlFKUaBVNLQFoFkdAd4bMpPRAr3V9lChoBmgJaA9DCMx5xr7kMGtAlIaUUpRoFU0tAWgWR0B3i35bhWHUdX2UKGgGaAloD0MIRYR/EbTWY0CUhpRSlGgVTS0BaBZHQHe3/CAMDwJ1fZQoaAZoCWgPQwgabsDnh9JkQJSGlFKUaBVNLQFoFkdAd7uF4cFQmHV9lChoBmgJaA9DCMGLvoI0UmNAlIaUUpRoFU0tAWgWR0B3vYzsQd0adX2UKGgGaAloD0MIvVXXoZqXYUCUhpRSlGgVTS0BaBZHQHfBLe67NB51fZQoaAZoCWgPQwgFFOrpo89lQJSGlFKUaBVNLQFoFkdAd+ZeTV2A5XV9lChoBmgJaA9DCLmMmxpob2VAlIaUUpRoFU0tAWgWR0B36LEm6XjVdX2UKGgGaAloD0MInBn9aDjzZ0CUhpRSlGgVTS0BaBZHQHfqkDIRywR1fZQoaAZoCWgPQwjjN4WViltiQJSGlFKUaBVNLQFoFkdAd+4qwyIpIHV9lChoBmgJaA9DCGd9yjHZv2VAlIaUUpRoFU0tAWgWR0B4EmZH/cWTdX2UKGgGaAloD0MIxXJLqyHVZECUhpRSlGgVTS0BaBZHQHgV3n2ZiNN1fZQoaAZoCWgPQwi5Us+C0JtjQJSGlFKUaBVNLQFoFkdAeBfGW2PT5XV9lChoBmgJaA9DCPfkYaHWs2BAlIaUUpRoFU0tAWgWR0B4HCWldkaudX2UKGgGaAloD0MIYFlpUgpaYkCUhpRSlGgVTS0BaBZHQHhGSydFvyd1fZQoaAZoCWgPQwiQSxx5IMotQJSGlFKUaBVNLQFoFkdAeEgIX0oSc3V9lChoBmgJaA9DCMaoa+398GJAlIaUUpRoFU0tAWgWR0B4Saliz9jxdX2UKGgGaAloD0MIPnWsUnrnZUCUhpRSlGgVTS0BaBZHQHhMvCAMDwJ1fZQoaAZoCWgPQwjy6hwDsltCwJSGlFKUaBVNLQFoFkdAeR7ngpBomHV9lChoBmgJaA9DCNYcIJgjNnHAlIaUUpRoFU0tAWgWR0B5IkFdLQHBdX2UKGgGaAloD0MINWJmn8eUY0CUhpRSlGgVTS0BaBZHQHkkQHE/B311fZQoaAZoCWgPQwjrOlRTkstiQJSGlFKUaBVNLQFoFkdAeSmH+6y0KXV9lChoBmgJaA9DCGsRUUzeC2VAlIaUUpRoFU0tAWgWR0B5URYLb5/LdX2UKGgGaAloD0MIIEWduYcMXUCUhpRSlGgVTS0BaBZHQHlUX0TURWd1fZQoaAZoCWgPQwj+tFGdDihmQJSGlFKUaBVNLQFoFkdAeVcI6bONYXV9lChoBmgJaA9DCBJMNbPWDHrAlIaUUpRoFU0gAWgWR0B5WhXr+o9+dX2UKGgGaAloD0MI4ba28DwrgcCUhpRSlGgVTQUBaBZHQHmKNrKvFFV1fZQoaAZoCWgPQwhyo8haQ79CQJSGlFKUaBVNLQFoFkdAeYsm3OObRXV9lChoBmgJaA9DCNC2mnVG7WBAlIaUUpRoFU0tAWgWR0B5jUZVGTcJdX2UKGgGaAloD0MIYCAIkCHyYkCUhpRSlGgVTS0BaBZHQHmSVnZkCmx1fZQoaAZoCWgPQwitM74vrrdjQJSGlFKUaBVNLQFoFkdAebcHPeHi33V9lChoBmgJaA9DCJNRZRj3qmhAlIaUUpRoFU0tAWgWR0B5uF07r9l3dX2UKGgGaAloD0MITyLCv4hZZECUhpRSlGgVTS0BaBZHQHm6hYFJQLx1fZQoaAZoCWgPQwgo84++SXRtQJSGlFKUaBVNLQFoFkdAeb5Sv1UVBXV9lChoBmgJaA9DCDZzSGohomJAlIaUUpRoFU0tAWgWR0B54LB68g6mdX2UKGgGaAloD0MIQE8DBsk1ZkCUhpRSlGgVTS0BaBZHQHnhrKJVKf51fZQoaAZoCWgPQwhcOXtntM9lQJSGlFKUaBVNLQFoFkdAeePlsguAZ3V9lChoBmgJaA9DCHCX/brT32RAlIaUUpRoFU0tAWgWR0B558DU3GXHdX2UKGgGaAloD0MIll0wuGaMZUCUhpRSlGgVTS0BaBZHQHoNJsO5J9R1fZQoaAZoCWgPQwjuW60TF+5jQJSGlFKUaBVNLQFoFkdAeg771ZkkKXV9lChoBmgJaA9DCIS7s3bbp1ZAlIaUUpRoFU0tAWgWR0B6EYWtU4rCdX2UKGgGaAloD0MIMunvpfAqZkCUhpRSlGgVTS0BaBZHQHoVcbNr0rd1fZQoaAZoCWgPQwiqu7ILhkpmQJSGlFKUaBVNLQFoFkdAekCTgVGkOHV9lChoBmgJaA9DCHDurx73bQJAlIaUUpRoFU0tAWgWR0B6Qx6ol2NedX2UKGgGaAloD0MIxNFVujvvZUCUhpRSlGgVTS0BaBZHQHpHs/+sHSp1fZQoaAZoCWgPQwhgqwSLQ+9kQJSGlFKUaBVNLQFoFkdAek9QZn+Q2nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 750, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.5, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 125.7033746233324, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T15:54:47.726224"}
|