Upload model to Hugging Face
Browse files- PPO-hardcoded.zip +2 -2
- PPO-hardcoded/data +18 -18
- PPO-hardcoded/policy.optimizer.pth +1 -1
- PPO-hardcoded/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
PPO-hardcoded.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6461bee4dc9160d7485cae4a5fd59bd0ada21879f19f251f76b91fc4bb460979
|
3 |
+
size 142141
|
PPO-hardcoded/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
@@ -48,7 +48,7 @@
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,11 +57,11 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
-
":serialized:": "
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
@@ -70,7 +70,7 @@
|
|
70 |
"_current_progress_remaining": -0.02400000000000002,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
@@ -79,7 +79,7 @@
|
|
79 |
"_n_updates": 250,
|
80 |
"n_steps": 2048,
|
81 |
"gamma": 0.99,
|
82 |
-
"gae_lambda": 0.
|
83 |
"ent_coef": 0.0,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e890e4e50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e890e4ee0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e890e4f70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e890e5000>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5e890e5090>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5e890e5120>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5e890e51b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e890e5240>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5e890e52d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e890e5360>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e890e53f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e890e5480>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f5e890d91c0>"
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1681155739820286200,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVxQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZQAAAAAAAAAOufrUH/1Ka/AADIQgAAyEIAAMhCe8/eQvv8Rr0AAMhCAADIQgAAyEKnKt5BjrXXvwAAyEIAAMhCAADIQl5T9kHQ3w3AAADIQgAAyEIAAMhClIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwWGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
|
|
70 |
"_current_progress_remaining": -0.02400000000000002,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISOF6FK49j0CUhpRSlIwBbJRLHowBdJRHQGtxvLPldTp1fZQoaAZoCWgPQwgUrkfhejyPQJSGlFKUaBVLLWgWR0BrcsdNnGsFdX2UKGgGaAloD0MIhetRuB43j0CUhpRSlGgVS3BoFkdAa3MWGh24eHV9lChoBmgJaA9DCHsUrkfhPI9AlIaUUpRoFUsoaBZHQGt0DHn2ZiN1fZQoaAZoCWgPQwhmZmZmZj6PQJSGlFKUaBVLFWgWR0BrdFy5qdpZdX2UKGgGaAloD0MI4XoUrkc9j0CUhpRSlGgVSyNoFkdAa3U1E3KjjHV9lChoBmgJaA9DCClcj8L1OI9AlIaUUpRoFUtZaBZHQGt1gxagVXV1fZQoaAZoCWgPQwhmZmZmZjyPQJSGlFKUaBVLLmgWR0BrddFKCg9NdX2UKGgGaAloD0MIKVyPwvU8j0CUhpRSlGgVSydoFkdAa3XdP+GXX3V9lChoBmgJaA9DCAAAAAAAPo9AlIaUUpRoFUsaaBZHQGt2NLteD4B1fZQoaAZoCWgPQwi4HoXrUT6PQJSGlFKUaBVLFmgWR0BrdlweeWfLdX2UKGgGaAloD0MIAAAAAAA+j0CUhpRSlGgVSxpoFkdAa3bcL0BfbHV9lChoBmgJaA9DCGZmZmZmPo9AlIaUUpRoFUsVaBZHQGt3Az544ZN1fZQoaAZoCWgPQwjNzMzMzDyPQJSGlFKUaBVLKWgWR0Brd2NkvsZ6dX2UKGgGaAloD0MISOF6FK49j0CUhpRSlGgVSx5oFkdAa3eBy0a6z3V9lChoBmgJaA9DCArXo3A9Po9AlIaUUpRoFUsXaBZHQGt3vicXm/51fZQoaAZoCWgPQwgUrkfhej6PQJSGlFKUaBVLFGgWR0BreEU9IPK/dX2UKGgGaAloD0MIXI/C9Sg+j0CUhpRSlGgVSxhoFkdAa3inH/95yHV9lChoBmgJaA9DCHE9CtejPI9AlIaUUpRoFUsraBZHQGt4pztCzC11fZQoaAZoCWgPQwjXo3A9Cj2PQJSGlFKUaBVLJmgWR0BreNfgJkXldX2UKGgGaAloD0MIXI/C9Sg8j0CUhpRSlGgVSzFoFkdAa3qEOiFj/nV9lChoBmgJaA9DCMP1KFyPOI9AlIaUUpRoFUteaBZHQGt9GcFyJbd1fZQoaAZoCWgPQwhxPQrXozyPQJSGlFKUaBVLK2gWR0BrfZbSqlxfdX2UKGgGaAloD0MIw/UoXI8+j0CUhpRSlGgVSxNoFkdAa367pV0cO3V9lChoBmgJaA9DCBSuR+F6PI9AlIaUUpRoFUstaBZHQGt/tTUAks11fZQoaAZoCWgPQwgpXI/C9TSPQJSGlFKUaBVLi2gWR0BrgEn9ehPCdX2UKGgGaAloD0MI7FG4HoU9j0CUhpRSlGgVSyBoFkdAa4CFiay8jHV9lChoBmgJaA9DCGZmZmZmPo9AlIaUUpRoFUsVaBZHQGuBi7kGRmt1fZQoaAZoCWgPQwhmZmZmZj6PQJSGlFKUaBVLFWgWR0Brgc1Muez2dX2UKGgGaAloD0MIFK5H4Xo8j0CUhpRSlGgVSy1oFkdAa4JvphWo33V9lChoBmgJaA9DCLgehetRPo9AlIaUUpRoFUsWaBZHQGuDnRkVerx1fZQoaAZoCWgPQwikcD0K1zGPQJSGlFKUaBVLsmgWR0Brg6aiKziTdX2UKGgGaAloD0MIcT0K16M+j0CUhpRSlGgVSxJoFkdAa4P/m1YyPHV9lChoBmgJaA9DCGZmZmZmPo9AlIaUUpRoFUsVaBZHQGuEqB/Zuht1fZQoaAZoCWgPQwgfhetRuDyPQJSGlFKUaBVLKmgWR0BrhoAIY3vQdX2UKGgGaAloD0MI7FG4HoU9j0CUhpRSlGgVSyBoFkdAa4aRPoFFD3V9lChoBmgJaA9DCB+F61G4Oo9AlIaUUpRoFUtDaBZHQGuHShrWRRx1fZQoaAZoCWgPQwhcj8L1KD6PQJSGlFKUaBVLGGgWR0Brh5nanJkodX2UKGgGaAloD0MIUrgehes3j0CUhpRSlGgVS2ZoFkdAa4fpFCswL3V9lChoBmgJaA9DCGZmZmZmPo9AlIaUUpRoFUsVaBZHQGuIGahHskZ1fZQoaAZoCWgPQwhxPQrXozyPQJSGlFKUaBVLK2gWR0BriY9LYf4idX2UKGgGaAloD0MIMzMzMzM7j0CUhpRSlGgVSz1oFkdAa4nxxT850nV9lChoBmgJaA9DCOF6FK5HO49AlIaUUpRoFUs8aBZHQGuLUA1ejVR1fZQoaAZoCWgPQwgK16NwPTiPQJSGlFKUaBVLYmgWR0Bri48fV7QcdX2UKGgGaAloD0MIrkfhehQ+j0CUhpRSlGgVSxloFkdAa4w3VCojwHV9lChoBmgJaA9DCArXo3A9Po9AlIaUUpRoFUsXaBZHQGuM8BEKE391fZQoaAZoCWgPQwhI4XoUrjmPQJSGlFKUaBVLUGgWR0Brj5pL26CldX2UKGgGaAloD0MI9ihcj8I5j0CUhpRSlGgVS09oFkdAa5ARHPNVznV9lChoBmgJaA9DCLgehetRPo9AlIaUUpRoFUsWaBZHQGuQ6cRUWEd1fZQoaAZoCWgPQwiuR+F6FDSPQJSGlFKUaBVLlmgWR0BrkXSBshxHdX2UKGgGaAloD0MIPQrXo3A3j0CUhpRSlGgVS2xoFkdAa5GnCwbEP3V9lChoBmgJaA9DCBSuR+F6Po9AlIaUUpRoFUsUaBZHQGuRsK1G9Yh1fZQoaAZoCWgPQwi4HoXrUT6PQJSGlFKUaBVLFmgWR0Brkk7ZFocrdX2UKGgGaAloD0MIuB6F61E6j0CUhpRSlGgVS0hoFkdAa5JirDIiknV9lChoBmgJaA9DCLgehetRPo9AlIaUUpRoFUsWaBZHQGuSiyprDZV1fZQoaAZoCWgPQwhmZmZmZj6PQJSGlFKUaBVLFWgWR0BrkzJEH+qBdX2UKGgGaAloD0MIXI/C9Sg8j0CUhpRSlGgVSzFoFkdAa5OM7U5MlHV9lChoBmgJaA9DCArXo3A9Po9AlIaUUpRoFUsXaBZHQGuUbsOXmeV1fZQoaAZoCWgPQwiuR+F6FDiPQJSGlFKUaBVLZGgWR0BrliREF4cFdX2UKGgGaAloD0MI9ihcj8I5j0CUhpRSlGgVS09oFkdAa5Y4GUwBYHV9lChoBmgJaA9DCIXrUbgeO49AlIaUUpRoFUs+aBZHQGuWzMqz7dl1fZQoaAZoCWgPQwhcj8L1KD6PQJSGlFKUaBVLGGgWR0BrlyR2bG3ndX2UKGgGaAloD0MIuB6F61E2j0CUhpRSlGgVS3poFkdAa5c5YHPeHnV9lChoBmgJaA9DCFK4HoXrPY9AlIaUUpRoFUsbaBZHQGuYLn9vS+h1fZQoaAZoCWgPQwj2KFyPwjuPQJSGlFKUaBVLNmgWR0BrmDopx3mndX2UKGgGaAloD0MIZmZmZmY8j0CUhpRSlGgVSy5oFkdAa5j+kP+XJHV9lChoBmgJaA9DCPYoXI/CPY9AlIaUUpRoFUsdaBZHQGuZTasZHd51fZQoaAZoCWgPQwhxPQrXoz6PQJSGlFKUaBVLEmgWR0Brmf8EV32VdX2UKGgGaAloD0MIexSuR+E4j0CUhpRSlGgVS1poFkdAa5pGHYYixHV9lChoBmgJaA9DCLgehetRPo9AlIaUUpRoFUsWaBZHQGucCd8Rcu91fZQoaAZoCWgPQwhxPQrXoziPQJSGlFKUaBVLXWgWR0BrnX71qWTpdX2UKGgGaAloD0MICtejcD06j0CUhpRSlGgVS0loFkdAa526FM7EHnV9lChoBmgJaA9DCLgehetRPo9AlIaUUpRoFUsWaBZHQGueVR1oxpN1fZQoaAZoCWgPQwgzMzMzMzWPQJSGlFKUaBVLiGgWR0BrnmAy2x6fdX2UKGgGaAloD0MIrkfhehQ+j0CUhpRSlGgVSxloFkdAa59J9y925nV9lChoBmgJaA9DCBSuR+F6OI9AlIaUUpRoFUtfaBZHQGufrBsQ/X51fZQoaAZoCWgPQwjXo3A9CjuPQJSGlFKUaBVLP2gWR0BroCAnUlRhdX2UKGgGaAloD0MIMzMzMzM9j0CUhpRSlGgVSyRoFkdAa6CpRXOnmHV9lChoBmgJaA9DCDMzMzMzO49AlIaUUpRoFUs9aBZHQGugtIsiB5J1fZQoaAZoCWgPQwjhehSuRz2PQJSGlFKUaBVLI2gWR0BroQN5MURGdX2UKGgGaAloD0MIFK5H4Xo+j0CUhpRSlGgVSxRoFkdAa6F5N47ihnV9lChoBmgJaA9DCHE9CtejPo9AlIaUUpRoFUsSaBZHQGuhtTUAks11fZQoaAZoCWgPQwgpXI/C9TyPQJSGlFKUaBVLJ2gWR0BrovQyAQQMdX2UKGgGaAloD0MIuB6F61E6j0CUhpRSlGgVS0hoFkdAa6NonKGL1nV9lChoBmgJaA9DCB+F61G4OI9AlIaUUpRoFUtcaBZHQGujooVmBe51fZQoaAZoCWgPQwjXo3A9CjuPQJSGlFKUaBVLP2gWR0BrpBkZrHlwdX2UKGgGaAloD0MISOF6FK49j0CUhpRSlGgVSx5oFkdAa6QZPVNHpnV9lChoBmgJaA9DCGZmZmZmPo9AlIaUUpRoFUsVaBZHQGukcDB/I811fZQoaAZoCWgPQwi4HoXrUT6PQJSGlFKUaBVLFmgWR0BrpPBeokzHdX2UKGgGaAloD0MIFK5H4Xo8j0CUhpRSlGgVSy1oFkdAa6UhIOH313V9lChoBmgJaA9DCD0K16NwPY9AlIaUUpRoFUshaBZHQGumY1gpjMF1fZQoaAZoCWgPQwgK16NwPTqPQJSGlFKUaBVLSWgWR0BrpuTNdJJ5dX2UKGgGaAloD0MIUrgehes9j0CUhpRSlGgVSxtoFkdAa6dtzjm0V3V9lChoBmgJaA9DCFyPwvUoPo9AlIaUUpRoFUsYaBZHQGun0cwQDmt1fZQoaAZoCWgPQwhxPQrXoziPQJSGlFKUaBVLXWgWR0BrqIEGJN0vdX2UKGgGaAloD0MI7FG4HoU3j0CUhpRSlGgVS2toFkdAa6iK1G9YfXV9lChoBmgJaA9DCHE9CtejPI9AlIaUUpRoFUsraBZHQGupdepn6Ed1fZQoaAZoCWgPQwgzMzMzMzuPQJSGlFKUaBVLPWgWR0BrqcMw1zhhdX2UKGgGaAloD0MICtejcD0+j0CUhpRSlGgVSxdoFkdAa6pXCCSRsHV9lChoBmgJaA9DCK5H4XoUOo9AlIaUUpRoFUtLaBZHQGurX+ERJ3B1ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
|
|
79 |
"_n_updates": 250,
|
80 |
"n_steps": 2048,
|
81 |
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.5,
|
83 |
"ent_coef": 0.0,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
PPO-hardcoded/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84857
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41b357ec5cf630f7ffbf57b34e8b60cc5469cc609e653a7354fd280f286f5552
|
3 |
size 84857
|
PPO-hardcoded/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 41857
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b427df302a6d3e35a976dfaceb80898716d6333a6df8e4d2fd1713916d4ef95c
|
3 |
size 41857
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1a6b9e8e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1a6b9e8ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1a6b9e8f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1a6b9e9000>", "_build": "<function ActorCriticPolicy._build at 0x7f1a6b9e9090>", "forward": "<function ActorCriticPolicy.forward at 0x7f1a6b9e9120>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1a6b9e91b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1a6b9e9240>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1a6b9e92d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1a6b9e9360>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1a6b9e93f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1a6b9e9480>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1a6b9ec800>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVgQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoCksFhZSMAUOUdJRSlIwEaGlnaJRoEiiWFAAAAAAAAAAA6P1I2w9JQAAAyEIAAMhCAADIQpRoCksFhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgUAAAAAAAAAAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYFAAAAAAAAAAEBAQEBlGghSwWFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [5], "low": "[0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True]", "bounded_above": "[ True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 204800, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681155374319662126, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVxQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZQAAAAAAAAAFcOokIF7VW/AADIQgAAyEIAAMhClk9LQ1iGzr4AAMhCAADIQgAAyELC/tVChE2RvwAAyEIAAMhCAADIQg5HNENXhxa/AADIQgAAyEIAAMhClIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwWGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICtejcD0KFMCUhpRSlIwBbJRN9QGMAXSUR0BnvXNPgvUSdX2UKGgGaAloD0MICtejcD0KFMCUhpRSlGgVTfUBaBZHQGe96FmFrVR1fZQoaAZoCWgPQwi4HoXrUTyPQJSGlFKUaBVLL2gWR0Bnv0IqslsxdX2UKGgGaAloD0MIexSuR+Eoj0CUhpRSlGgVTSIBaBZHQGfClTWGyop1fZQoaAZoCWgPQwhcj8L1KDaPQJSGlFKUaBVLfGgWR0Bnwwjt5UtJdX2UKGgGaAloD0MI16NwPQo3j0CUhpRSlGgVS3FoFkdAZ8P3pwCKaXV9lChoBmgJaA9DCPYoXI/CPY9AlIaUUpRoFUsdaBZHQGfEJ8v24/h1fZQoaAZoCWgPQwgUrkfhejyPQJSGlFKUaBVLLWgWR0Bnxa2tuDSPdX2UKGgGaAloD0MICtejcD0KFMCUhpRSlGgVTfUBaBZHQGfJ3vx6OYJ1fZQoaAZoCWgPQwgpXI/C9TKPQJSGlFKUaBVLpGgWR0BnymVNYbKidX2UKGgGaAloD0MIFK5H4Xomj0CUhpRSlGgVTUABaBZHQGfOwfZElVt1fZQoaAZoCWgPQwgK16NwPQoUwJSGlFKUaBVN9QFoFkdAZ9n5vcafjHV9lChoBmgJaA9DCArXo3A9ChTAlIaUUpRoFU31AWgWR0Bn3sadc0LudX2UKGgGaAloD0MICtejcD0KFMCUhpRSlGgVTfUBaBZHQGffhVuJk5J1fZQoaAZoCWgPQwgK16NwPTyPQJSGlFKUaBVLMGgWR0Bn4Zftx+8XdX2UKGgGaAloD0MIuB6F61E8j0CUhpRSlGgVSy9oFkdAZ+QtthuwYHV9lChoBmgJaA9DCArXo3A9ChTAlIaUUpRoFU31AWgWR0Bn5XsolUqAdX2UKGgGaAloD0MIXI/C9Sguj0CUhpRSlGgVS+BoFkdAZ+395yEL6XV9lChoBmgJaA9DCArXo3A9ChTAlIaUUpRoFU31AWgWR0Bn73EMspXqdX2UKGgGaAloD0MICtejcD0KFMCUhpRSlGgVTfUBaBZHQGf1/mDDjzZ1fZQoaAZoCWgPQwgK16NwPQoUwJSGlFKUaBVN9QFoFkdAZ/kPBi1Aq3V9lChoBmgJaA9DCArXo3A9ChTAlIaUUpRoFU31AWgWR0BoA6ncclw+dX2UKGgGaAloD0MICtejcD0KFMCUhpRSlGgVTfUBaBZHQGgFGsFMZgp1fZQoaAZoCWgPQwh7FK5H4TqPQJSGlFKUaBVLQWgWR0BoBiUHIIWydX2UKGgGaAloD0MI9ihcj8I9j0CUhpRSlGgVSx1oFkdAaAY36yjYZnV9lChoBmgJaA9DCArXo3A9ChTAlIaUUpRoFU31AWgWR0BoCdlNDc/MdX2UKGgGaAloD0MICtejcD0KFMCUhpRSlGgVTfUBaBZHQGgM8KgIyCZ1fZQoaAZoCWgPQwjsUbgehSWPQJSGlFKUaBVNTAFoFkdAaMG+evpyInV9lChoBmgJaA9DCAAAAAAAPo9AlIaUUpRoFUsaaBZHQGjDGKqGUOd1fZQoaAZoCWgPQwgK16NwPQoUwJSGlFKUaBVN9QFoFkdAaMUKeCkGinV9lChoBmgJaA9DCArXo3A9ChTAlIaUUpRoFU31AWgWR0BoxR42S+xodX2UKGgGaAloD0MIcT0K16M6j0CUhpRSlGgVS0RoFkdAaMbSCvovBnV9lChoBmgJaA9DCFK4HoXrO49AlIaUUpRoFUs0aBZHQGjI1T72tdR1fZQoaAZoCWgPQwjsUbgehTmPQJSGlFKUaBVLUmgWR0Boyn7aZhKEdX2UKGgGaAloD0MIAAAAAAA8j0CUhpRSlGgVSzNoFkdAaM2TQE6kqXV9lChoBmgJaA9DCArXo3A9ChTAlIaUUpRoFU31AWgWR0Boz4ToMa0hdX2UKGgGaAloD0MIzczMzMwsj0CUhpRSlGgVS/FoFkdAaNLB3zMA3nV9lChoBmgJaA9DCFK4HoXrLY9AlIaUUpRoFUvjaBZHQGjZnZ00WM11fZQoaAZoCWgPQwh7FK5H4SCPQJSGlFKUaBVNhgFoFkdAaNwVFhG6PXV9lChoBmgJaA9DCLgehetRKI9AlIaUUpRoFU0pAWgWR0Bo42RRuTA4dX2UKGgGaAloD0MICtejcD0KFMCUhpRSlGgVTfUBaBZHQGjnhqTKT0R1fZQoaAZoCWgPQwgUrkfhejaPQJSGlFKUaBVLeGgWR0Bo7CE+PikwdX2UKGgGaAloD0MICtejcD0cj0CUhpRSlGgVTcABaBZHQGjyPfTCtRx1fZQoaAZoCWgPQwgK16NwPQoUwJSGlFKUaBVN9QFoFkdAaPLIHTqjanV9lChoBmgJaA9DCFyPwvUoPo9AlIaUUpRoFUsYaBZHQGjzLVvuPWB1fZQoaAZoCWgPQwhSuB6F6z2PQJSGlFKUaBVLG2gWR0Bo9DlV94NadX2UKGgGaAloD0MICtejcD0KFMCUhpRSlGgVTfUBaBZHQGj41CHARCh1fZQoaAZoCWgPQwgK16NwPQoUwJSGlFKUaBVN9QFoFkdAaQBYq5LAYnV9lChoBmgJaA9DCJqZmZmZPY9AlIaUUpRoFUsfaBZHQGkBjKPn0TV1fZQoaAZoCWgPQwgK16NwPQoUwJSGlFKUaBVN9QFoFkdAaQY6wt8NQXV9lChoBmgJaA9DCM3MzMzMIo9AlIaUUpRoFU1uAWgWR0BpBwFaB7NTdX2UKGgGaAloD0MImpmZmZk9j0CUhpRSlGgVSx9oFkdAaQdwCr92o3V9lChoBmgJaA9DCArXo3A9ChTAlIaUUpRoFU31AWgWR0BpB6wdKdxydX2UKGgGaAloD0MImpmZmZklj0CUhpRSlGgVTUsBaBZHQGnUwsf7rLR1fZQoaAZoCWgPQwgK16NwPQoUwJSGlFKUaBVN9QFoFkdAadU593KSxXV9lChoBmgJaA9DCArXo3A9ChTAlIaUUpRoFU31AWgWR0Bp24W3z+WGdX2UKGgGaAloD0MICtejcD0KFMCUhpRSlGgVTfUBaBZHQGncB4D9wWF1fZQoaAZoCWgPQwgpXI/C9RyPQJSGlFKUaBVNtwFoFkdAaehP4VRDTnV9lChoBmgJaA9DCEjhehSuJ49AlIaUUpRoFU0xAWgWR0Bp6JFZxJd0dX2UKGgGaAloD0MICtejcD0KFMCUhpRSlGgVTfUBaBZHQGnqb1RLsa91fZQoaAZoCWgPQwh7FK5H4TqPQJSGlFKUaBVLQWgWR0Bp7fMbFS88dX2UKGgGaAloD0MICtejcD0KFMCUhpRSlGgVTfUBaBZHQGnxyG8Empl1fZQoaAZoCWgPQwhSuB6F6zePQJSGlFKUaBVLZmgWR0Bp9bWuoxYadX2UKGgGaAloD0MIXI/C9Sg+j0CUhpRSlGgVSxhoFkdAafakrwvxpnV9lChoBmgJaA9DCOxRuB6FI49AlIaUUpRoFU1lAWgWR0Bp95KYiPhidX2UKGgGaAloD0MIcT0K16M8j0CUhpRSlGgVSytoFkdAafk7pV0cO3V9lChoBmgJaA9DCHE9CtejIo9AlIaUUpRoFU1wAWgWR0Bp/C+evpyIdX2UKGgGaAloD0MICtejcD0KFMCUhpRSlGgVTfUBaBZHQGn84xDb8FZ1fZQoaAZoCWgPQwhmZmZmZjqPQJSGlFKUaBVLR2gWR0Bp/vDpC8e0dX2UKGgGaAloD0MIXI/C9Sgqj0CUhpRSlGgVTRIBaBZHQGoHd30PH1h1fZQoaAZoCWgPQwgK16NwPQoUwJSGlFKUaBVN9QFoFkdAagoXTmW+oXV9lChoBmgJaA9DCArXo3A9ChTAlIaUUpRoFU31AWgWR0BqDKhL5AQhdX2UKGgGaAloD0MICtejcD0KFMCUhpRSlGgVTfUBaBZHQGoSU9QoCuF1fZQoaAZoCWgPQwgAAAAAACSPQJSGlFKUaBVNXwFoFkdAahovV3EAHXV9lChoBmgJaA9DCArXo3A9ChTAlIaUUpRoFU31AWgWR0BqGtum78NydX2UKGgGaAloD0MICtejcD0KFMCUhpRSlGgVTfUBaBZHQGodYxcmjTN1fZQoaAZoCWgPQwiuR+F6FDKPQJSGlFKUaBVLr2gWR0BqJCWu5jH5dX2UKGgGaAloD0MICtejcD0KFMCUhpRSlGgVTfUBaBZHQGolpPAO8TV1fZQoaAZoCWgPQwj2KFyPwhuPQJSGlFKUaBVNxgFoFkdAausEtdzGP3V9lChoBmgJaA9DCBSuR+F6GI9AlIaUUpRoFU3vAWgWR0Bq7EhRqGlAdX2UKGgGaAloD0MIKVyPwvU8j0CUhpRSlGgVSydoFkdAau3bN8ma6XV9lChoBmgJaA9DCArXo3A9ChTAlIaUUpRoFU31AWgWR0Bq+3ZRKpT/dX2UKGgGaAloD0MICtejcD0KFMCUhpRSlGgVTfUBaBZHQGr8+XZ5AyF1fZQoaAZoCWgPQwgpXI/C9TqPQJSGlFKUaBVLQGgWR0Bq/ezhP0qZdX2UKGgGaAloD0MIw/UoXI88j0CUhpRSlGgVSyxoFkdAawBd69kBjnV9lChoBmgJaA9DCArXo3A9ChTAlIaUUpRoFU31AWgWR0BrBiz1K5CodX2UKGgGaAloD0MI4XoUrkcvj0CUhpRSlGgVS9JoFkdAawgUUwi7kHV9lChoBmgJaA9DCArXo3A9ChTAlIaUUpRoFU31AWgWR0BrCe5Yoy9FdX2UKGgGaAloD0MICtejcD0KFMCUhpRSlGgVTfUBaBZHQGsd1dxAB1d1fZQoaAZoCWgPQwgK16NwPQoUwJSGlFKUaBVN9QFoFkdAayPajesPrnV9lChoBmgJaA9DCArXo3A9ChTAlIaUUpRoFU31AWgWR0BrJTrPdEb6dX2UKGgGaAloD0MICtejcD0KFMCUhpRSlGgVTfUBaBZHQGsmQf6oESx1fZQoaAZoCWgPQwjXo3A9CiGPQJSGlFKUaBVNhAFoFkdAazYCDmKZUnV9lChoBmgJaA9DCArXo3A9ChTAlIaUUpRoFU31AWgWR0BrNlDKHO8kdX2UKGgGaAloD0MIw/UoXI8kj0CUhpRSlGgVTVgBaBZHQGs2vjOs1bd1fZQoaAZoCWgPQwgK16NwPQoUwJSGlFKUaBVN9QFoFkdAazu+MZP2wnV9lChoBmgJaA9DCOxRuB6FJ49AlIaUUpRoFU0zAWgWR0BrS8houf29dX2UKGgGaAloD0MICtejcD0KFMCUhpRSlGgVTfUBaBZHQGtObJW/8EV1fZQoaAZoCWgPQwgK16NwPQoUwJSGlFKUaBVN9QFoFkdAa07iSaEzwnV9lChoBmgJaA9DCArXo3A9ChTAlIaUUpRoFU31AWgWR0BrT5GQSzw+dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e890e4e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e890e4ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e890e4f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e890e5000>", "_build": "<function ActorCriticPolicy._build at 0x7f5e890e5090>", "forward": "<function ActorCriticPolicy.forward at 0x7f5e890e5120>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5e890e51b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e890e5240>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5e890e52d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e890e5360>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e890e53f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e890e5480>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5e890d91c0>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVgQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoCksFhZSMAUOUdJRSlIwEaGlnaJRoEiiWFAAAAAAAAAAA6P1I2w9JQAAAyEIAAMhCAADIQpRoCksFhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgUAAAAAAAAAAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYFAAAAAAAAAAEBAQEBlGghSwWFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [5], "low": "[0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True]", "bounded_above": "[ True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 204800, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681155739820286200, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVxQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZQAAAAAAAAAOufrUH/1Ka/AADIQgAAyEIAAMhCe8/eQvv8Rr0AAMhCAADIQgAAyEKnKt5BjrXXvwAAyEIAAMhCAADIQl5T9kHQ3w3AAADIQgAAyEIAAMhClIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwWGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISOF6FK49j0CUhpRSlIwBbJRLHowBdJRHQGtxvLPldTp1fZQoaAZoCWgPQwgUrkfhejyPQJSGlFKUaBVLLWgWR0BrcsdNnGsFdX2UKGgGaAloD0MIhetRuB43j0CUhpRSlGgVS3BoFkdAa3MWGh24eHV9lChoBmgJaA9DCHsUrkfhPI9AlIaUUpRoFUsoaBZHQGt0DHn2ZiN1fZQoaAZoCWgPQwhmZmZmZj6PQJSGlFKUaBVLFWgWR0BrdFy5qdpZdX2UKGgGaAloD0MI4XoUrkc9j0CUhpRSlGgVSyNoFkdAa3U1E3KjjHV9lChoBmgJaA9DCClcj8L1OI9AlIaUUpRoFUtZaBZHQGt1gxagVXV1fZQoaAZoCWgPQwhmZmZmZjyPQJSGlFKUaBVLLmgWR0BrddFKCg9NdX2UKGgGaAloD0MIKVyPwvU8j0CUhpRSlGgVSydoFkdAa3XdP+GXX3V9lChoBmgJaA9DCAAAAAAAPo9AlIaUUpRoFUsaaBZHQGt2NLteD4B1fZQoaAZoCWgPQwi4HoXrUT6PQJSGlFKUaBVLFmgWR0BrdlweeWfLdX2UKGgGaAloD0MIAAAAAAA+j0CUhpRSlGgVSxpoFkdAa3bcL0BfbHV9lChoBmgJaA9DCGZmZmZmPo9AlIaUUpRoFUsVaBZHQGt3Az544ZN1fZQoaAZoCWgPQwjNzMzMzDyPQJSGlFKUaBVLKWgWR0Brd2NkvsZ6dX2UKGgGaAloD0MISOF6FK49j0CUhpRSlGgVSx5oFkdAa3eBy0a6z3V9lChoBmgJaA9DCArXo3A9Po9AlIaUUpRoFUsXaBZHQGt3vicXm/51fZQoaAZoCWgPQwgUrkfhej6PQJSGlFKUaBVLFGgWR0BreEU9IPK/dX2UKGgGaAloD0MIXI/C9Sg+j0CUhpRSlGgVSxhoFkdAa3inH/95yHV9lChoBmgJaA9DCHE9CtejPI9AlIaUUpRoFUsraBZHQGt4pztCzC11fZQoaAZoCWgPQwjXo3A9Cj2PQJSGlFKUaBVLJmgWR0BreNfgJkXldX2UKGgGaAloD0MIXI/C9Sg8j0CUhpRSlGgVSzFoFkdAa3qEOiFj/nV9lChoBmgJaA9DCMP1KFyPOI9AlIaUUpRoFUteaBZHQGt9GcFyJbd1fZQoaAZoCWgPQwhxPQrXozyPQJSGlFKUaBVLK2gWR0BrfZbSqlxfdX2UKGgGaAloD0MIw/UoXI8+j0CUhpRSlGgVSxNoFkdAa367pV0cO3V9lChoBmgJaA9DCBSuR+F6PI9AlIaUUpRoFUstaBZHQGt/tTUAks11fZQoaAZoCWgPQwgpXI/C9TSPQJSGlFKUaBVLi2gWR0BrgEn9ehPCdX2UKGgGaAloD0MI7FG4HoU9j0CUhpRSlGgVSyBoFkdAa4CFiay8jHV9lChoBmgJaA9DCGZmZmZmPo9AlIaUUpRoFUsVaBZHQGuBi7kGRmt1fZQoaAZoCWgPQwhmZmZmZj6PQJSGlFKUaBVLFWgWR0Brgc1Muez2dX2UKGgGaAloD0MIFK5H4Xo8j0CUhpRSlGgVSy1oFkdAa4JvphWo33V9lChoBmgJaA9DCLgehetRPo9AlIaUUpRoFUsWaBZHQGuDnRkVerx1fZQoaAZoCWgPQwikcD0K1zGPQJSGlFKUaBVLsmgWR0Brg6aiKziTdX2UKGgGaAloD0MIcT0K16M+j0CUhpRSlGgVSxJoFkdAa4P/m1YyPHV9lChoBmgJaA9DCGZmZmZmPo9AlIaUUpRoFUsVaBZHQGuEqB/Zuht1fZQoaAZoCWgPQwgfhetRuDyPQJSGlFKUaBVLKmgWR0BrhoAIY3vQdX2UKGgGaAloD0MI7FG4HoU9j0CUhpRSlGgVSyBoFkdAa4aRPoFFD3V9lChoBmgJaA9DCB+F61G4Oo9AlIaUUpRoFUtDaBZHQGuHShrWRRx1fZQoaAZoCWgPQwhcj8L1KD6PQJSGlFKUaBVLGGgWR0Brh5nanJkodX2UKGgGaAloD0MIUrgehes3j0CUhpRSlGgVS2ZoFkdAa4fpFCswL3V9lChoBmgJaA9DCGZmZmZmPo9AlIaUUpRoFUsVaBZHQGuIGahHskZ1fZQoaAZoCWgPQwhxPQrXozyPQJSGlFKUaBVLK2gWR0BriY9LYf4idX2UKGgGaAloD0MIMzMzMzM7j0CUhpRSlGgVSz1oFkdAa4nxxT850nV9lChoBmgJaA9DCOF6FK5HO49AlIaUUpRoFUs8aBZHQGuLUA1ejVR1fZQoaAZoCWgPQwgK16NwPTiPQJSGlFKUaBVLYmgWR0Bri48fV7QcdX2UKGgGaAloD0MIrkfhehQ+j0CUhpRSlGgVSxloFkdAa4w3VCojwHV9lChoBmgJaA9DCArXo3A9Po9AlIaUUpRoFUsXaBZHQGuM8BEKE391fZQoaAZoCWgPQwhI4XoUrjmPQJSGlFKUaBVLUGgWR0Brj5pL26CldX2UKGgGaAloD0MI9ihcj8I5j0CUhpRSlGgVS09oFkdAa5ARHPNVznV9lChoBmgJaA9DCLgehetRPo9AlIaUUpRoFUsWaBZHQGuQ6cRUWEd1fZQoaAZoCWgPQwiuR+F6FDSPQJSGlFKUaBVLlmgWR0BrkXSBshxHdX2UKGgGaAloD0MIPQrXo3A3j0CUhpRSlGgVS2xoFkdAa5GnCwbEP3V9lChoBmgJaA9DCBSuR+F6Po9AlIaUUpRoFUsUaBZHQGuRsK1G9Yh1fZQoaAZoCWgPQwi4HoXrUT6PQJSGlFKUaBVLFmgWR0Brkk7ZFocrdX2UKGgGaAloD0MIuB6F61E6j0CUhpRSlGgVS0hoFkdAa5JirDIiknV9lChoBmgJaA9DCLgehetRPo9AlIaUUpRoFUsWaBZHQGuSiyprDZV1fZQoaAZoCWgPQwhmZmZmZj6PQJSGlFKUaBVLFWgWR0BrkzJEH+qBdX2UKGgGaAloD0MIXI/C9Sg8j0CUhpRSlGgVSzFoFkdAa5OM7U5MlHV9lChoBmgJaA9DCArXo3A9Po9AlIaUUpRoFUsXaBZHQGuUbsOXmeV1fZQoaAZoCWgPQwiuR+F6FDiPQJSGlFKUaBVLZGgWR0BrliREF4cFdX2UKGgGaAloD0MI9ihcj8I5j0CUhpRSlGgVS09oFkdAa5Y4GUwBYHV9lChoBmgJaA9DCIXrUbgeO49AlIaUUpRoFUs+aBZHQGuWzMqz7dl1fZQoaAZoCWgPQwhcj8L1KD6PQJSGlFKUaBVLGGgWR0BrlyR2bG3ndX2UKGgGaAloD0MIuB6F61E2j0CUhpRSlGgVS3poFkdAa5c5YHPeHnV9lChoBmgJaA9DCFK4HoXrPY9AlIaUUpRoFUsbaBZHQGuYLn9vS+h1fZQoaAZoCWgPQwj2KFyPwjuPQJSGlFKUaBVLNmgWR0BrmDopx3mndX2UKGgGaAloD0MIZmZmZmY8j0CUhpRSlGgVSy5oFkdAa5j+kP+XJHV9lChoBmgJaA9DCPYoXI/CPY9AlIaUUpRoFUsdaBZHQGuZTasZHd51fZQoaAZoCWgPQwhxPQrXoz6PQJSGlFKUaBVLEmgWR0Brmf8EV32VdX2UKGgGaAloD0MIexSuR+E4j0CUhpRSlGgVS1poFkdAa5pGHYYixHV9lChoBmgJaA9DCLgehetRPo9AlIaUUpRoFUsWaBZHQGucCd8Rcu91fZQoaAZoCWgPQwhxPQrXoziPQJSGlFKUaBVLXWgWR0BrnX71qWTpdX2UKGgGaAloD0MICtejcD06j0CUhpRSlGgVS0loFkdAa526FM7EHnV9lChoBmgJaA9DCLgehetRPo9AlIaUUpRoFUsWaBZHQGueVR1oxpN1fZQoaAZoCWgPQwgzMzMzMzWPQJSGlFKUaBVLiGgWR0BrnmAy2x6fdX2UKGgGaAloD0MIrkfhehQ+j0CUhpRSlGgVSxloFkdAa59J9y925nV9lChoBmgJaA9DCBSuR+F6OI9AlIaUUpRoFUtfaBZHQGufrBsQ/X51fZQoaAZoCWgPQwjXo3A9CjuPQJSGlFKUaBVLP2gWR0BroCAnUlRhdX2UKGgGaAloD0MIMzMzMzM9j0CUhpRSlGgVSyRoFkdAa6CpRXOnmHV9lChoBmgJaA9DCDMzMzMzO49AlIaUUpRoFUs9aBZHQGugtIsiB5J1fZQoaAZoCWgPQwjhehSuRz2PQJSGlFKUaBVLI2gWR0BroQN5MURGdX2UKGgGaAloD0MIFK5H4Xo+j0CUhpRSlGgVSxRoFkdAa6F5N47ihnV9lChoBmgJaA9DCHE9CtejPo9AlIaUUpRoFUsSaBZHQGuhtTUAks11fZQoaAZoCWgPQwgpXI/C9TyPQJSGlFKUaBVLJ2gWR0BrovQyAQQMdX2UKGgGaAloD0MIuB6F61E6j0CUhpRSlGgVS0hoFkdAa6NonKGL1nV9lChoBmgJaA9DCB+F61G4OI9AlIaUUpRoFUtcaBZHQGujooVmBe51fZQoaAZoCWgPQwjXo3A9CjuPQJSGlFKUaBVLP2gWR0BrpBkZrHlwdX2UKGgGaAloD0MISOF6FK49j0CUhpRSlGgVSx5oFkdAa6QZPVNHpnV9lChoBmgJaA9DCGZmZmZmPo9AlIaUUpRoFUsVaBZHQGukcDB/I811fZQoaAZoCWgPQwi4HoXrUT6PQJSGlFKUaBVLFmgWR0BrpPBeokzHdX2UKGgGaAloD0MIFK5H4Xo8j0CUhpRSlGgVSy1oFkdAa6UhIOH313V9lChoBmgJaA9DCD0K16NwPY9AlIaUUpRoFUshaBZHQGumY1gpjMF1fZQoaAZoCWgPQwgK16NwPTqPQJSGlFKUaBVLSWgWR0BrpuTNdJJ5dX2UKGgGaAloD0MIUrgehes9j0CUhpRSlGgVSxtoFkdAa6dtzjm0V3V9lChoBmgJaA9DCFyPwvUoPo9AlIaUUpRoFUsYaBZHQGun0cwQDmt1fZQoaAZoCWgPQwhxPQrXoziPQJSGlFKUaBVLXWgWR0BrqIEGJN0vdX2UKGgGaAloD0MI7FG4HoU3j0CUhpRSlGgVS2toFkdAa6iK1G9YfXV9lChoBmgJaA9DCHE9CtejPI9AlIaUUpRoFUsraBZHQGupdepn6Ed1fZQoaAZoCWgPQwgzMzMzMzuPQJSGlFKUaBVLPWgWR0BrqcMw1zhhdX2UKGgGaAloD0MICtejcD0+j0CUhpRSlGgVSxdoFkdAa6pXCCSRsHV9lChoBmgJaA9DCK5H4XoUOo9AlIaUUpRoFUtLaBZHQGurX+ERJ3B1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.5, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -5.009999999999937, "std_reward": 8.881784197001252e-16, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-10T12:
|
|
|
1 |
+
{"mean_reward": -5.009999999999937, "std_reward": 8.881784197001252e-16, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-10T12:46:14.922237"}
|