culteejen commited on
Commit
f8d2e93
1 Parent(s): cf1e618

Upload model to Hugging Face

Browse files
PPO-emptymap.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:344fe1db85838e95140bd8866fb44bbf431b4a7a5977a0e8a56bc94cc3c753fc
3
  size 150266
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f542b3a82a5333efdaa0a1c43dd8587038d3df9c1bfa063b8bda628b368441e0
3
  size 150266
PPO-emptymap/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f119b6e4dc0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f119b6e4e50>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f119b6e4ee0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f119b6e4f70>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f119b6e5000>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f119b6e5090>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f119b6e5120>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f119b6e51b0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f119b6e5240>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f119b6e52d0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f119b6e5360>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f119b6e53f0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f119b9d5e40>"
21
  },
22
  "verbose": true,
23
  "policy_kwargs": {},
@@ -48,7 +48,7 @@
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
- "start_time": 1681506276589397702,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
@@ -57,7 +57,7 @@
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
- ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAACoiqEM7ov4+AADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEIZ/xNDZK8gPwAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCsNGWQrf9DsAAAMhCAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQplmmUPa+Te/AADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
@@ -70,7 +70,7 @@
70
  "_current_progress_remaining": -0.010346666666666726,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
- ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbHnletvgNcCUhpRSlIwBbJRNLQGMAXSUR0Buwt/nW8RMdX2UKGgGaAloD0MIC2E1ltCej0CUhpRSlGgVSyloFkdAbsNATqSowXV9lChoBmgJaA9DCOc1dolKgY9AlIaUUpRoFUsYaBZHQG7DsSkCV8l1fZQoaAZoCWgPQwiv7ILBNTcvwJSGlFKUaBVNLQFoFkdAbsR4QjD8+HV9lChoBmgJaA9DCNS7eD9uCzzAlIaUUpRoFU0tAWgWR0BuxqHymQ8wdX2UKGgGaAloD0MIYCNJEK7IJsCUhpRSlGgVTS0BaBZHQG7NcHGCI1t1fZQoaAZoCWgPQwhR3Vz8bTNAwJSGlFKUaBVNLQFoFkdAbs3hZyMkyHV9lChoBmgJaA9DCF02OuenONQ/lIaUUpRoFU0tAWgWR0Buzqf8MuvmdX2UKGgGaAloD0MIUyRfCaTCQcCUhpRSlGgVTS0BaBZHQG7Q0PH1e0J1fZQoaAZoCWgPQwhVFRqIZZ84QJSGlFKUaBVNLQFoFkdAbteb0e2d/nV9lChoBmgJaA9DCOf7qfHSe0DAlIaUUpRoFU0tAWgWR0Bu2AzFdcB2dX2UKGgGaAloD0MI6KViY15nQMCUhpRSlGgVTS0BaBZHQG7Y02tMfzV1fZQoaAZoCWgPQwi7XpoiwOkuQJSGlFKUaBVNLQFoFkdAbtr95Qgs9XV9lChoBmgJaA9DCLvs153ugEDAlIaUUpRoFU0tAWgWR0BvgLZDiOvMdX2UKGgGaAloD0MIXi9NEeDkN8CUhpRSlGgVTS0BaBZHQG+BJk5IYm91fZQoaAZoCWgPQwgcXhCRmt47wJSGlFKUaBVNLQFoFkdAb4Hs9jgAInV9lChoBmgJaA9DCP0QGyycZBhAlIaUUpRoFU0tAWgWR0BvhBmGucMFdX2UKGgGaAloD0MIebKbGZ2Jj0CUhpRSlGgVS1xoFkdAb4RFqi48U3V9lChoBmgJaA9DCFyRmKCGPxPAlIaUUpRoFU0tAWgWR0BviutQsPJ8dX2UKGgGaAloD0MIlpaRek8VK0CUhpRSlGgVTS0BaBZHQG+MI1cdHUd1fZQoaAZoCWgPQwhWZd8Vwe8awJSGlFKUaBVNLQFoFkdAb45Q0GeMAHV9lChoBmgJaA9DCJ3zUxwHlkHAlIaUUpRoFU0tAWgWR0Bvjn27FsHjdX2UKGgGaAloD0MIl6q0xTWSP8CUhpRSlGgVTS0BaBZHQG+VI/A0sOJ1fZQoaAZoCWgPQwhCCMiXUGEDwJSGlFKUaBVNLQFoFkdAb5ZbNbC79XV9lChoBmgJaA9DCEJbzqW4Gh1AlIaUUpRoFU0tAWgWR0BvmIkeIVM3dX2UKGgGaAloD0MIkuaPaW3a9r+UhpRSlGgVTS0BaBZHQG+Ytnf2saN1fZQoaAZoCWgPQwg2AvG6fqEtwJSGlFKUaBVNLQFoFkdAb59WkrPMS3V9lChoBmgJaA9DCGAF+G7zFEDAlIaUUpRoFU0tAWgWR0BvoI/PgNwzdX2UKGgGaAloD0MIRdYaSg3Sj0CUhpRSlGgVSzBoFkdAb6IyGi5/b3V9lChoBmgJaA9DCB+fkJ23YStAlIaUUpRoFU0tAWgWR0Bvor3K0UoKdX2UKGgGaAloD0MIzQUujzVvPMCUhpRSlGgVTS0BaBZHQG+i6n752yN1fZQoaAZoCWgPQwjNkZVfBnc+wJSGlFKUaBVNLQFoFkdAb6mLjPv8ZXV9lChoBmgJaA9DCAb0wp0L8ydAlIaUUpRoFU0tAWgWR0BvrGObRWtEdX2UKGgGaAloD0MIl1gZjXymM8CUhpRSlGgVTS0BaBZHQG+s8Gkep4t1fZQoaAZoCWgPQwgvbTgsDUxAwJSGlFKUaBVNLQFoFkdAb60dgfEGaHV9lChoBmgJaA9DCIyhnGi3Yo9AlIaUUpRoFUsQaBZHQG+tfWUbDMx1fZQoaAZoCWgPQwjTFAFO71otwJSGlFKUaBVNLQFoFkdAb7PFERaouXV9lChoBmgJaA9DCD/mAwKdCUDAlIaUUpRoFU0tAWgWR0Bvtp5HEuQIdX2UKGgGaAloD0MIraHUXkQjKcCUhpRSlGgVTS0BaBZHQG+3VtO2y9p1fZQoaAZoCWgPQwj+Q/rt69AjQJSGlFKUaBVNLQFoFkdAb7e2jwhGIHV9lChoBmgJaA9DCC49murJNCVAlIaUUpRoFU0tAWgWR0Bvvf2mHgxbdX2UKGgGaAloD0MI9u0kIvw7NcCUhpRSlGgVTS0BaBZHQG/A1jqfOD91fZQoaAZoCWgPQwifr1kuGwE/wJSGlFKUaBVNLQFoFkdAb8GOtGNJe3V9lChoBmgJaA9DCPYoXI/CdTLAlIaUUpRoFU0tAWgWR0Bvwe3hGYrsdX2UKGgGaAloD0MItWtCWmPYPsCUhpRSlGgVTS0BaBZHQHA3GrS3LFJ1fZQoaAZoCWgPQwiVRzfCog4xQJSGlFKUaBVNLQFoFkdAcDiHLzPKMnV9lChoBmgJaA9DCHuEmiFVrDDAlIaUUpRoFU0tAWgWR0BwOOMIeHSGdX2UKGgGaAloD0MI7wG6L2f6PsCUhpRSlGgVTS0BaBZHQHA5EyHmA9V1fZQoaAZoCWgPQwitTzkmi3M/wJSGlFKUaBVNLQFoFkdAcDw8FY+0PnV9lChoBmgJaA9DCD4FwHgG0TdAlIaUUpRoFU0tAWgWR0BwPalGgBcSdX2UKGgGaAloD0MIw7ewbrwHNMCUhpRSlGgVTS0BaBZHQHA+BJqZc9p1fZQoaAZoCWgPQwhWRbjJqL49wJSGlFKUaBVNLQFoFkdAcD40Bfa6BnV9lChoBmgJaA9DCK1NY3st0DzAlIaUUpRoFU0tAWgWR0BwQVVT72tddX2UKGgGaAloD0MI/g5FgT7BI8CUhpRSlGgVTS0BaBZHQHBCwyIpH7R1fZQoaAZoCWgPQwiP4EbKFmkKwJSGlFKUaBVNLQFoFkdAcEMf0mMOw3V9lChoBmgJaA9DCF9CBYcXcDBAlIaUUpRoFU0tAWgWR0BwQ0+PikwfdX2UKGgGaAloD0MIIZT3cTQnPsCUhpRSlGgVTS0BaBZHQHBGc1n/T9d1fZQoaAZoCWgPQwi+UMB2MMokwJSGlFKUaBVNLQFoFkdAcEfeRPoFFHV9lChoBmgJaA9DCEF9y5wuWxrAlIaUUpRoFU0tAWgWR0BwSDleWv8qdX2UKGgGaAloD0MIfQT+8PPzQMCUhpRSlGgVTS0BaBZHQHBIaSowVTJ1fZQoaAZoCWgPQwgiNIKNa3+PQJSGlFKUaBVLYmgWR0BwSYgV45cUdX2UKGgGaAloD0MIraQV33B7j0CUhpRSlGgVS2FoFkdAcEngQHzH0nV9lChoBmgJaA9DCK4NFeP8iTHAlIaUUpRoFU0tAWgWR0BwS44T9KmLdX2UKGgGaAloD0MIMbPPY5QVQMCUhpRSlGgVTS0BaBZHQHBNhdyDIzZ1fZQoaAZoCWgPQwg6kWCqmcUaQJSGlFKUaBVNLQFoFkdAcE6lr/Khc3V9lChoBmgJaA9DCHJsPUM4xgjAlIaUUpRoFU0tAWgWR0BwTv0g8r7PdX2UKGgGaAloD0MIqdpugm96EMCUhpRSlGgVTS0BaBZHQHBQrFwT/Q11fZQoaAZoCWgPQwgYlGk0uXg9wJSGlFKUaBVNLQFoFkdAcFKluWKMvXV9lChoBmgJaA9DCOgSDr3F4zfAlIaUUpRoFU0tAWgWR0BwU8PK+zt1dX2UKGgGaAloD0MI6xotB3okOECUhpRSlGgVTS0BaBZHQHBUG7nPmgd1fZQoaAZoCWgPQwgNi1HX2klAwJSGlFKUaBVNLQFoFkdAcFXKhL5AQnV9lChoBmgJaA9DCEZgrG9gWjfAlIaUUpRoFU0tAWgWR0BwV8N0/4ZddX2UKGgGaAloD0MIa9YZ3xcFRMCUhpRSlGgVTS0BaBZHQHCvHSjQAuJ1fZQoaAZoCWgPQwjue9RfrxQ1QJSGlFKUaBVNLQFoFkdAcK93rD63zHV9lChoBmgJaA9DCGXfFcH/Vj7AlIaUUpRoFU0tAWgWR0BwsSXu3MINdX2UKGgGaAloD0MIcLTjht8zQMCUhpRSlGgVTS0BaBZHQHCzH71qWTp1fZQoaAZoCWgPQwgEBHP0+H0+wJSGlFKUaBVNLQFoFkdAcLQ8O09hZ3V9lChoBmgJaA9DCKnYmNcRhxtAlIaUUpRoFU0tAWgWR0BwtJSAH3UQdX2UKGgGaAloD0MIOiS1UDJ5MECUhpRSlGgVTS0BaBZHQHC2RGH58Bx1fZQoaAZoCWgPQwhR9pZyvig4wJSGlFKUaBVNLQFoFkdAcLg8zAN5MXV9lChoBmgJaA9DCOM3hZUKQkDAlIaUUpRoFU0tAWgWR0BwuVsCT2WZdX2UKGgGaAloD0MInQ35ZwZFO8CUhpRSlGgVTS0BaBZHQHC5sc2itaJ1fZQoaAZoCWgPQwifceFASII/wJSGlFKUaBVNLQFoFkdAcLtfqX4TK3V9lChoBmgJaA9DCGU3M/rRRDbAlIaUUpRoFU0tAWgWR0BwvVYKYzBRdX2UKGgGaAloD0MI9+Rhodb8P8CUhpRSlGgVTS0BaBZHQHC+dmUW2w51fZQoaAZoCWgPQwiCGylbJK09wJSGlFKUaBVNLQFoFkdAcL7NsFdLQHV9lChoBmgJaA9DCCbjGMkeFT/AlIaUUpRoFU0tAWgWR0BwwHxkNFz/dX2UKGgGaAloD0MIVI80uK0tPcCUhpRSlGgVTS0BaBZHQHDCdHlOoHd1fZQoaAZoCWgPQwiWQ4ts52slQJSGlFKUaBVNLQFoFkdAcMOVHWjGk3V9lChoBmgJaA9DCHB7gsR2yz7AlIaUUpRoFU0tAWgWR0Bww+zu4PPLdX2UKGgGaAloD0MIiulCrP6KQMCUhpRSlGgVTS0BaBZHQHDFnirDIil1fZQoaAZoCWgPQwj9MhgjEsXwP5SGlFKUaBVNLQFoFkdAcMeZZB9kSXV9lChoBmgJaA9DCF9/Ep87BUDAlIaUUpRoFU0tAWgWR0BwyLmSyMUAdX2UKGgGaAloD0MIwYu+gjRrKkCUhpRSlGgVTS0BaBZHQHDJEbT+ee51fZQoaAZoCWgPQwgqrFRQsZGPQJSGlFKUaBVLWWgWR0BwypXfZVXFdX2UKGgGaAloD0MIWtb9YyE6GcCUhpRSlGgVTS0BaBZHQHDKwkgOjIt1fZQoaAZoCWgPQwhhcM0d/a/sP5SGlFKUaBVNLQFoFkdAcMy8rI5o5HV9lChoBmgJaA9DCGAfnbryXTzAlIaUUpRoFU0tAWgWR0Bwzd0OmR/3dX2UKGgGaAloD0MIUz4EVaMTPsCUhpRSlGgVTS0BaBZHQHDPuvIOpbV1fZQoaAZoCWgPQwhy32qduJzjv5SGlFKUaBVNLQFoFkdAcM/nezlcQnVlLg=="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0b68adcf70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0b68add000>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0b68add090>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0b68add120>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0b68add1b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0b68add240>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0b68add2d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0b68add360>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0b68add3f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0b68add480>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0b68add510>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0b68add5a0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f0b68ad8f00>"
21
  },
22
  "verbose": true,
23
  "policy_kwargs": {},
 
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1681506957296297806,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
 
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAG50qkMe5aU+AADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEJvk5ZDPPgfPwAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCVYTLQ/Ekv74AAMhCAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQsk24EK1JxfAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
 
70
  "_current_progress_remaining": -0.010346666666666726,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdHtJY7SONcCUhpRSlIwBbJRNLQGMAXSUR0BviqvcJtzkdX2UKGgGaAloD0MIaeOItfgaQMCUhpRSlGgVTS0BaBZHQG+MRgJC0F91fZQoaAZoCWgPQwh1eAjjpyFAwJSGlFKUaBVNLQFoFkdAb5OgK4QSSXV9lChoBmgJaA9DCNlBJa5jFC/AlIaUUpRoFU0tAWgWR0Bvk82DQJHBdX2UKGgGaAloD0MIU3jQ7LozS8CUhpRSlGgVTS0BaBZHQG+U+SbH6uZ1fZQoaAZoCWgPQwh/Ep87wZ46wJSGlFKUaBVNLQFoFkdAb5aVdHDrJXV9lChoBmgJaA9DCEDeq1YmrBXAlIaUUpRoFU0tAWgWR0BvnfFm4AjqdX2UKGgGaAloD0MI1IBB0qfxQMCUhpRSlGgVTS0BaBZHQG+eHpr1uix1fZQoaAZoCWgPQwhZaVIKui9AwJSGlFKUaBVNLQFoFkdAb59KeTV2BHV9lChoBmgJaA9DCAiwyK8fdj7AlIaUUpRoFU0tAWgWR0BvoOZRbbDedX2UKGgGaAloD0MITb7Z5sb0C0CUhpRSlGgVTS0BaBZHQG+oPNeMQ3B1fZQoaAZoCWgPQwito6oJos4LQJSGlFKUaBVNLQFoFkdAb6hqM3qA0HV9lChoBmgJaA9DCB/ylqsftz7AlIaUUpRoFU0tAWgWR0BvqZZbILgGdX2UKGgGaAloD0MI2NMOf006QMCUhpRSlGgVTS0BaBZHQHAnjbrTpgV1fZQoaAZoCWgPQwjwiuB/K5kDwJSGlFKUaBVNLQFoFkdAcCtI+GGmDXV9lChoBmgJaA9DCGiVmdL6WyxAlIaUUpRoFU0tAWgWR0BwK1+kP+XJdX2UKGgGaAloD0MIuCOcFrxsPcCUhpRSlGgVTS0BaBZHQHAr9a6jFhp1fZQoaAZoCWgPQwgawjHLfiWPQJSGlFKUaBVLBWgWR0BwLAwUQCjldX2UKGgGaAloD0MI1bFK6ZkmOMCUhpRSlGgVTS0BaBZHQHAsw6ZH/cZ1fZQoaAZoCWgPQwjkLVc/NqkwQJSGlFKUaBVNLQFoFkdAcDBzEaVD8nV9lChoBmgJaA9DCMJR8uocizDAlIaUUpRoFU0tAWgWR0BwMImdAgPmdX2UKGgGaAloD0MILiC0Hr7MH8CUhpRSlGgVTS0BaBZHQHAxNaUzKtB1fZQoaAZoCWgPQwgEVg4tsrU/wJSGlFKUaBVNLQFoFkdAcDHtozvZy3V9lChoBmgJaA9DCJZ2ai43eDrAlIaUUpRoFU0tAWgWR0BwNZuO0b97dX2UKGgGaAloD0MI7gc8MICgFUCUhpRSlGgVTS0BaBZHQHA1shPj4pN1fZQoaAZoCWgPQwgJi4o4napOwJSGlFKUaBVNLQFoFkdAcDZbz9S/CnV9lChoBmgJaA9DCHaMKy6O2jzAlIaUUpRoFU0tAWgWR0BwNxNUOuq4dX2UKGgGaAloD0MIIhgHl46VPMCUhpRSlGgVTS0BaBZHQHA6wI2OyVx1fZQoaAZoCWgPQwhwJNBgU2M+wJSGlFKUaBVNLQFoFkdAcDrXJHRTj3V9lChoBmgJaA9DCInwL4LGxEDAlIaUUpRoFU0tAWgWR0BwO4L6UJOWdX2UKGgGaAloD0MIe5+qQgNxOECUhpRSlGgVTS0BaBZHQHA8O5BkZrJ1fZQoaAZoCWgPQwiGcqJdhZxAwJSGlFKUaBVNLQFoFkdAcD/rmyPdVXV9lChoBmgJaA9DCH8WS5F8ZQHAlIaUUpRoFU0tAWgWR0BwQAI0IkZ8dX2UKGgGaAloD0MI1o7iHHU0KcCUhpRSlGgVTS0BaBZHQHBArXDm8ul1fZQoaAZoCWgPQwg9X7NcNkpAwJSGlFKUaBVNLQFoFkdAcEFlyR0U5HV9lChoBmgJaA9DCJc8npafQ49AlIaUUpRoFUsDaBZHQHBBc2zfJmx1fZQoaAZoCWgPQwhy+KQTCb4xwJSGlFKUaBVNLQFoFkdAcEUVVPva13V9lChoBmgJaA9DCC7IluXrGjjAlIaUUpRoFU0tAWgWR0BwRSvxH5JsdX2UKGgGaAloD0MIZTbIJMPdjkCUhpRSlGgVTSUBaBZHQHBFtHMEA5t1fZQoaAZoCWgPQwjj3vyGiTYjQJSGlFKUaBVNLQFoFkdAcEaZwn6VMXV9lChoBmgJaA9DCGAEjZlE3RjAlIaUUpRoFU0tAWgWR0BwSjigkC3gdX2UKGgGaAloD0MI/ilVouzrQMCUhpRSlGgVTS0BaBZHQHBKTzqbBoF1fZQoaAZoCWgPQwjJqgg3GW0+wJSGlFKUaBVNLQFoFkdAcKSwoLG7z3V9lChoBmgJaA9DCATHZdzU/DnAlIaUUpRoFU0tAWgWR0BwpZ0MgEEDdX2UKGgGaAloD0MIRyHJrN4xFECUhpRSlGgVTS0BaBZHQHCpP8IiTt91fZQoaAZoCWgPQwhRhxVu+Rg5wJSGlFKUaBVNLQFoFkdAcKlWAf+0gXV9lChoBmgJaA9DCB+EgHwJ3lPAlIaUUpRoFU0tAWgWR0Bwqd3FDOTrdX2UKGgGaAloD0MIXtVZLbDrRMCUhpRSlGgVTS0BaBZHQHCqxJRO1v51fZQoaAZoCWgPQwijrUoi+1A+wJSGlFKUaBVNLQFoFkdAcK5kN4JNTXV9lChoBmgJaA9DCM9Nm3EaIihAlIaUUpRoFU0tAWgWR0BwrnrSmZVodX2UKGgGaAloD0MIBp/m5EWsQMCUhpRSlGgVTS0BaBZHQHCvAwK0D2d1fZQoaAZoCWgPQwguVz82yU8AQJSGlFKUaBVNLQFoFkdAcK/rtE5QxnV9lChoBmgJaA9DCEa28/3U6B5AlIaUUpRoFU0tAWgWR0Bws4hfShJzdX2UKGgGaAloD0MIWg70UNs4QMCUhpRSlGgVTS0BaBZHQHCznvttygh1fZQoaAZoCWgPQwgujV94JftIwJSGlFKUaBVNLQFoFkdAcLQn6VMVUXV9lChoBmgJaA9DCC8YXHOnYI9AlIaUUpRoFUtJaBZHQHC0yU5dWyV1fZQoaAZoCWgPQwjRHi+kw1s/wJSGlFKUaBVNLQFoFkdAcLUQFs54nnV9lChoBmgJaA9DCDwW26Si8TNAlIaUUpRoFU0tAWgWR0BwuMhNdqtYdX2UKGgGaAloD0MIxjTTvU7aQcCUhpRSlGgVTS0BaBZHQHC5URSP2f11fZQoaAZoCWgPQwiu8C4X8TUswJSGlFKUaBVNLQFoFkdAcLny1NQCS3V9lChoBmgJaA9DCONtpddmG0HAlIaUUpRoFU0tAWgWR0BwujmbLEDRdX2UKGgGaAloD0MILnJPVxfDj0CUhpRSlGgVS7doFkdAcL1b8WKuS3V9lChoBmgJaA9DCAn6Cz1ihB5AlIaUUpRoFU0tAWgWR0BwvfF5v99/dX2UKGgGaAloD0MIz57L1CS0R8CUhpRSlGgVTS0BaBZHQHC+ekP+XJJ1fZQoaAZoCWgPQwhwtrkxPY6PQJSGlFKUaBVLIWgWR0BwvoMOPNmldX2UKGgGaAloD0MIUfhsHRwEJcCUhpRSlGgVTS0BaBZHQHC/HHzYmLN1fZQoaAZoCWgPQwhg5jv4iTM+wJSGlFKUaBVNLQFoFkdAcMKF5v99+nV9lChoBmgJaA9DCIZXkjzXM0DAlIaUUpRoFU0tAWgWR0Bww6O3lS0jdX2UKGgGaAloD0MI8db5t8sOIMCUhpRSlGgVTS0BaBZHQHDDrI91U2l1fZQoaAZoCWgPQwjN5QZDHTo9wJSGlFKUaBVNLQFoFkdAcMRE6kqMFXV9lChoBmgJaA9DCDEIrBxaRCNAlIaUUpRoFU0tAWgWR0BxGkCGN70GdX2UKGgGaAloD0MI+KqVCb9YNMCUhpRSlGgVTS0BaBZHQHEbc0P6KtR1fZQoaAZoCWgPQwjgumJGeCFAwJSGlFKUaBVNLQFoFkdAcRt8G9pRGnV9lChoBmgJaA9DCG5PkNju1idAlIaUUpRoFU0tAWgWR0BxHBXhfjS5dX2UKGgGaAloD0MICB10CYeqOMCUhpRSlGgVTS0BaBZHQHEff8/D+BJ1fZQoaAZoCWgPQwjN6bKY2NJEwJSGlFKUaBVNLQFoFkdAcSCck+otMHV9lChoBmgJaA9DCE92M6MfsULAlIaUUpRoFU0tAWgWR0BxIKViWmgrdX2UKGgGaAloD0MIAi1dwTZaJcCUhpRSlGgVTS0BaBZHQHEhPra/RE51fZQoaAZoCWgPQwhV3/lFCXY8wJSGlFKUaBVNLQFoFkdAcSSnw5NoJ3V9lChoBmgJaA9DCBqJ0Ag2LjbAlIaUUpRoFU0tAWgWR0BxJcPy08eTdX2UKGgGaAloD0MIEaYol8afNsCUhpRSlGgVTS0BaBZHQHElzNMXaal1fZQoaAZoCWgPQwgz+tFwyog9wJSGlFKUaBVNLQFoFkdAcSZmr8zhxnV9lChoBmgJaA9DCHP0+L1N7xbAlIaUUpRoFU0tAWgWR0BxKdQBPsRhdX2UKGgGaAloD0MI+YIWEjDKOMCUhpRSlGgVTS0BaBZHQHEq8rZrYXh1fZQoaAZoCWgPQwjlJ9U+HYcoQJSGlFKUaBVNLQFoFkdAcSr7kXDWLHV9lChoBmgJaA9DCEWEfxE0piVAlIaUUpRoFU0tAWgWR0BxK5YvFm4BdX2UKGgGaAloD0MInYL8bKQHj0CUhpRSlGgVS2doFkdAcSy5eqrBCXV9lChoBmgJaA9DCPMFLSTg6I9AlIaUUpRoFUtlaBZHQHEsuVxCIDZ1fZQoaAZoCWgPQwhDVrd6TrocQJSGlFKUaBVNLQFoFkdAcS8DsMRYinV9lChoBmgJaA9DCIS8HkwKn49AlIaUUpRoFUveaBZHQHEwi1JDmbN1fZQoaAZoCWgPQwh6/Ul87iw+wJSGlFKUaBVNLQFoFkdAcTDEWIoE0XV9lChoBmgJaA9DCMdHizOGES7AlIaUUpRoFU0tAWgWR0BxMegdwNsndX2UKGgGaAloD0MIv4BeuHORO8CUhpRSlGgVTS0BaBZHQHE0MOby6MB1fZQoaAZoCWgPQwgjgnFw6UJMwJSGlFKUaBVNLQFoFkdAcTW3mmtQsXV9lChoBmgJaA9DCJS9pZwvbkDAlIaUUpRoFU0tAWgWR0BxNfCxeLNwdX2UKGgGaAloD0MIAi1dwTZWNMCUhpRSlGgVTS0BaBZHQHE3FFH8TBZ1fZQoaAZoCWgPQwihn6nXLQRAwJSGlFKUaBVNLQFoFkdAcTlcrAgxJ3V9lChoBmgJaA9DCEkPQ6vzbI5AlIaUUpRoFU0iAWgWR0BxOrQw9JSSdX2UKGgGaAloD0MIP1dbsb/snj+UhpRSlGgVTS0BaBZHQHE7HUtqYZ51fZQoaAZoCWgPQwg2Bp0QOtA9wJSGlFKUaBVNLQFoFkdAcTxAeq7yx3VlLg=="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
PPO-emptymap/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c14e05b7c9e13c0c8eba9180ee9341019848313c7b2d170627f6aca204b9ee8c
3
  size 89977
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a10a016415302d3f56aa1c8b0824ec8741ea9e554fd2ddeb6cbbaac2d49c38c
3
  size 89977
PPO-emptymap/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:edd056c15551d5d971e8008f380472e8c1e46eeaf9cb78913590e36cbabae3be
3
  size 44417
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb40135dda9c4187e74b79fb5b22dfcee80ad79beae37aa08958c3b3debe845e
3
  size 44417
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: RoombaAToB-Hardcoded
17
  metrics:
18
  - type: mean_reward
19
- value: -8.15 +/- 23.09
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: RoombaAToB-Hardcoded
17
  metrics:
18
  - type: mean_reward
19
+ value: -75.97 +/- 92.16
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f119b6e4dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f119b6e4e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f119b6e4ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f119b6e4f70>", "_build": "<function ActorCriticPolicy._build at 0x7f119b6e5000>", "forward": "<function ActorCriticPolicy.forward at 0x7f119b6e5090>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f119b6e5120>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f119b6e51b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f119b6e5240>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f119b6e52d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f119b6e5360>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f119b6e53f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f119b9d5e40>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 303104, "_total_timesteps": 300000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681506276589397702, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAACoiqEM7ov4+AADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEIZ/xNDZK8gPwAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCsNGWQrf9DsAAAMhCAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQplmmUPa+Te/AADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.010346666666666726, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbHnletvgNcCUhpRSlIwBbJRNLQGMAXSUR0Buwt/nW8RMdX2UKGgGaAloD0MIC2E1ltCej0CUhpRSlGgVSyloFkdAbsNATqSowXV9lChoBmgJaA9DCOc1dolKgY9AlIaUUpRoFUsYaBZHQG7DsSkCV8l1fZQoaAZoCWgPQwiv7ILBNTcvwJSGlFKUaBVNLQFoFkdAbsR4QjD8+HV9lChoBmgJaA9DCNS7eD9uCzzAlIaUUpRoFU0tAWgWR0BuxqHymQ8wdX2UKGgGaAloD0MIYCNJEK7IJsCUhpRSlGgVTS0BaBZHQG7NcHGCI1t1fZQoaAZoCWgPQwhR3Vz8bTNAwJSGlFKUaBVNLQFoFkdAbs3hZyMkyHV9lChoBmgJaA9DCF02OuenONQ/lIaUUpRoFU0tAWgWR0Buzqf8MuvmdX2UKGgGaAloD0MIUyRfCaTCQcCUhpRSlGgVTS0BaBZHQG7Q0PH1e0J1fZQoaAZoCWgPQwhVFRqIZZ84QJSGlFKUaBVNLQFoFkdAbteb0e2d/nV9lChoBmgJaA9DCOf7qfHSe0DAlIaUUpRoFU0tAWgWR0Bu2AzFdcB2dX2UKGgGaAloD0MI6KViY15nQMCUhpRSlGgVTS0BaBZHQG7Y02tMfzV1fZQoaAZoCWgPQwi7XpoiwOkuQJSGlFKUaBVNLQFoFkdAbtr95Qgs9XV9lChoBmgJaA9DCLvs153ugEDAlIaUUpRoFU0tAWgWR0BvgLZDiOvMdX2UKGgGaAloD0MIXi9NEeDkN8CUhpRSlGgVTS0BaBZHQG+BJk5IYm91fZQoaAZoCWgPQwgcXhCRmt47wJSGlFKUaBVNLQFoFkdAb4Hs9jgAInV9lChoBmgJaA9DCP0QGyycZBhAlIaUUpRoFU0tAWgWR0BvhBmGucMFdX2UKGgGaAloD0MIebKbGZ2Jj0CUhpRSlGgVS1xoFkdAb4RFqi48U3V9lChoBmgJaA9DCFyRmKCGPxPAlIaUUpRoFU0tAWgWR0BviutQsPJ8dX2UKGgGaAloD0MIlpaRek8VK0CUhpRSlGgVTS0BaBZHQG+MI1cdHUd1fZQoaAZoCWgPQwhWZd8Vwe8awJSGlFKUaBVNLQFoFkdAb45Q0GeMAHV9lChoBmgJaA9DCJ3zUxwHlkHAlIaUUpRoFU0tAWgWR0Bvjn27FsHjdX2UKGgGaAloD0MIl6q0xTWSP8CUhpRSlGgVTS0BaBZHQG+VI/A0sOJ1fZQoaAZoCWgPQwhCCMiXUGEDwJSGlFKUaBVNLQFoFkdAb5ZbNbC79XV9lChoBmgJaA9DCEJbzqW4Gh1AlIaUUpRoFU0tAWgWR0BvmIkeIVM3dX2UKGgGaAloD0MIkuaPaW3a9r+UhpRSlGgVTS0BaBZHQG+Ytnf2saN1fZQoaAZoCWgPQwg2AvG6fqEtwJSGlFKUaBVNLQFoFkdAb59WkrPMS3V9lChoBmgJaA9DCGAF+G7zFEDAlIaUUpRoFU0tAWgWR0BvoI/PgNwzdX2UKGgGaAloD0MIRdYaSg3Sj0CUhpRSlGgVSzBoFkdAb6IyGi5/b3V9lChoBmgJaA9DCB+fkJ23YStAlIaUUpRoFU0tAWgWR0Bvor3K0UoKdX2UKGgGaAloD0MIzQUujzVvPMCUhpRSlGgVTS0BaBZHQG+i6n752yN1fZQoaAZoCWgPQwjNkZVfBnc+wJSGlFKUaBVNLQFoFkdAb6mLjPv8ZXV9lChoBmgJaA9DCAb0wp0L8ydAlIaUUpRoFU0tAWgWR0BvrGObRWtEdX2UKGgGaAloD0MIl1gZjXymM8CUhpRSlGgVTS0BaBZHQG+s8Gkep4t1fZQoaAZoCWgPQwgvbTgsDUxAwJSGlFKUaBVNLQFoFkdAb60dgfEGaHV9lChoBmgJaA9DCIyhnGi3Yo9AlIaUUpRoFUsQaBZHQG+tfWUbDMx1fZQoaAZoCWgPQwjTFAFO71otwJSGlFKUaBVNLQFoFkdAb7PFERaouXV9lChoBmgJaA9DCD/mAwKdCUDAlIaUUpRoFU0tAWgWR0Bvtp5HEuQIdX2UKGgGaAloD0MIraHUXkQjKcCUhpRSlGgVTS0BaBZHQG+3VtO2y9p1fZQoaAZoCWgPQwj+Q/rt69AjQJSGlFKUaBVNLQFoFkdAb7e2jwhGIHV9lChoBmgJaA9DCC49murJNCVAlIaUUpRoFU0tAWgWR0Bvvf2mHgxbdX2UKGgGaAloD0MI9u0kIvw7NcCUhpRSlGgVTS0BaBZHQG/A1jqfOD91fZQoaAZoCWgPQwifr1kuGwE/wJSGlFKUaBVNLQFoFkdAb8GOtGNJe3V9lChoBmgJaA9DCPYoXI/CdTLAlIaUUpRoFU0tAWgWR0Bvwe3hGYrsdX2UKGgGaAloD0MItWtCWmPYPsCUhpRSlGgVTS0BaBZHQHA3GrS3LFJ1fZQoaAZoCWgPQwiVRzfCog4xQJSGlFKUaBVNLQFoFkdAcDiHLzPKMnV9lChoBmgJaA9DCHuEmiFVrDDAlIaUUpRoFU0tAWgWR0BwOOMIeHSGdX2UKGgGaAloD0MI7wG6L2f6PsCUhpRSlGgVTS0BaBZHQHA5EyHmA9V1fZQoaAZoCWgPQwitTzkmi3M/wJSGlFKUaBVNLQFoFkdAcDw8FY+0PnV9lChoBmgJaA9DCD4FwHgG0TdAlIaUUpRoFU0tAWgWR0BwPalGgBcSdX2UKGgGaAloD0MIw7ewbrwHNMCUhpRSlGgVTS0BaBZHQHA+BJqZc9p1fZQoaAZoCWgPQwhWRbjJqL49wJSGlFKUaBVNLQFoFkdAcD40Bfa6BnV9lChoBmgJaA9DCK1NY3st0DzAlIaUUpRoFU0tAWgWR0BwQVVT72tddX2UKGgGaAloD0MI/g5FgT7BI8CUhpRSlGgVTS0BaBZHQHBCwyIpH7R1fZQoaAZoCWgPQwiP4EbKFmkKwJSGlFKUaBVNLQFoFkdAcEMf0mMOw3V9lChoBmgJaA9DCF9CBYcXcDBAlIaUUpRoFU0tAWgWR0BwQ0+PikwfdX2UKGgGaAloD0MIIZT3cTQnPsCUhpRSlGgVTS0BaBZHQHBGc1n/T9d1fZQoaAZoCWgPQwi+UMB2MMokwJSGlFKUaBVNLQFoFkdAcEfeRPoFFHV9lChoBmgJaA9DCEF9y5wuWxrAlIaUUpRoFU0tAWgWR0BwSDleWv8qdX2UKGgGaAloD0MIfQT+8PPzQMCUhpRSlGgVTS0BaBZHQHBIaSowVTJ1fZQoaAZoCWgPQwgiNIKNa3+PQJSGlFKUaBVLYmgWR0BwSYgV45cUdX2UKGgGaAloD0MIraQV33B7j0CUhpRSlGgVS2FoFkdAcEngQHzH0nV9lChoBmgJaA9DCK4NFeP8iTHAlIaUUpRoFU0tAWgWR0BwS44T9KmLdX2UKGgGaAloD0MIMbPPY5QVQMCUhpRSlGgVTS0BaBZHQHBNhdyDIzZ1fZQoaAZoCWgPQwg6kWCqmcUaQJSGlFKUaBVNLQFoFkdAcE6lr/Khc3V9lChoBmgJaA9DCHJsPUM4xgjAlIaUUpRoFU0tAWgWR0BwTv0g8r7PdX2UKGgGaAloD0MIqdpugm96EMCUhpRSlGgVTS0BaBZHQHBQrFwT/Q11fZQoaAZoCWgPQwgYlGk0uXg9wJSGlFKUaBVNLQFoFkdAcFKluWKMvXV9lChoBmgJaA9DCOgSDr3F4zfAlIaUUpRoFU0tAWgWR0BwU8PK+zt1dX2UKGgGaAloD0MI6xotB3okOECUhpRSlGgVTS0BaBZHQHBUG7nPmgd1fZQoaAZoCWgPQwgNi1HX2klAwJSGlFKUaBVNLQFoFkdAcFXKhL5AQnV9lChoBmgJaA9DCEZgrG9gWjfAlIaUUpRoFU0tAWgWR0BwV8N0/4ZddX2UKGgGaAloD0MIa9YZ3xcFRMCUhpRSlGgVTS0BaBZHQHCvHSjQAuJ1fZQoaAZoCWgPQwjue9RfrxQ1QJSGlFKUaBVNLQFoFkdAcK93rD63zHV9lChoBmgJaA9DCGXfFcH/Vj7AlIaUUpRoFU0tAWgWR0BwsSXu3MINdX2UKGgGaAloD0MIcLTjht8zQMCUhpRSlGgVTS0BaBZHQHCzH71qWTp1fZQoaAZoCWgPQwgEBHP0+H0+wJSGlFKUaBVNLQFoFkdAcLQ8O09hZ3V9lChoBmgJaA9DCKnYmNcRhxtAlIaUUpRoFU0tAWgWR0BwtJSAH3UQdX2UKGgGaAloD0MIOiS1UDJ5MECUhpRSlGgVTS0BaBZHQHC2RGH58Bx1fZQoaAZoCWgPQwhR9pZyvig4wJSGlFKUaBVNLQFoFkdAcLg8zAN5MXV9lChoBmgJaA9DCOM3hZUKQkDAlIaUUpRoFU0tAWgWR0BwuVsCT2WZdX2UKGgGaAloD0MInQ35ZwZFO8CUhpRSlGgVTS0BaBZHQHC5sc2itaJ1fZQoaAZoCWgPQwifceFASII/wJSGlFKUaBVNLQFoFkdAcLtfqX4TK3V9lChoBmgJaA9DCGU3M/rRRDbAlIaUUpRoFU0tAWgWR0BwvVYKYzBRdX2UKGgGaAloD0MI9+Rhodb8P8CUhpRSlGgVTS0BaBZHQHC+dmUW2w51fZQoaAZoCWgPQwiCGylbJK09wJSGlFKUaBVNLQFoFkdAcL7NsFdLQHV9lChoBmgJaA9DCCbjGMkeFT/AlIaUUpRoFU0tAWgWR0BwwHxkNFz/dX2UKGgGaAloD0MIVI80uK0tPcCUhpRSlGgVTS0BaBZHQHDCdHlOoHd1fZQoaAZoCWgPQwiWQ4ts52slQJSGlFKUaBVNLQFoFkdAcMOVHWjGk3V9lChoBmgJaA9DCHB7gsR2yz7AlIaUUpRoFU0tAWgWR0Bww+zu4PPLdX2UKGgGaAloD0MIiulCrP6KQMCUhpRSlGgVTS0BaBZHQHDFnirDIil1fZQoaAZoCWgPQwj9MhgjEsXwP5SGlFKUaBVNLQFoFkdAcMeZZB9kSXV9lChoBmgJaA9DCF9/Ep87BUDAlIaUUpRoFU0tAWgWR0BwyLmSyMUAdX2UKGgGaAloD0MIwYu+gjRrKkCUhpRSlGgVTS0BaBZHQHDJEbT+ee51fZQoaAZoCWgPQwgqrFRQsZGPQJSGlFKUaBVLWWgWR0BwypXfZVXFdX2UKGgGaAloD0MIWtb9YyE6GcCUhpRSlGgVTS0BaBZHQHDKwkgOjIt1fZQoaAZoCWgPQwhhcM0d/a/sP5SGlFKUaBVNLQFoFkdAcMy8rI5o5HV9lChoBmgJaA9DCGAfnbryXTzAlIaUUpRoFU0tAWgWR0Bwzd0OmR/3dX2UKGgGaAloD0MIUz4EVaMTPsCUhpRSlGgVTS0BaBZHQHDPuvIOpbV1fZQoaAZoCWgPQwhy32qduJzjv5SGlFKUaBVNLQFoFkdAcM/nezlcQnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 370, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.5, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0b68adcf70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0b68add000>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0b68add090>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0b68add120>", "_build": "<function ActorCriticPolicy._build at 0x7f0b68add1b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0b68add240>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0b68add2d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0b68add360>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0b68add3f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0b68add480>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0b68add510>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0b68add5a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0b68ad8f00>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 303104, "_total_timesteps": 300000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681506957296297806, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAG50qkMe5aU+AADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEJvk5ZDPPgfPwAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCVYTLQ/Ekv74AAMhCAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQsk24EK1JxfAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.010346666666666726, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdHtJY7SONcCUhpRSlIwBbJRNLQGMAXSUR0BviqvcJtzkdX2UKGgGaAloD0MIaeOItfgaQMCUhpRSlGgVTS0BaBZHQG+MRgJC0F91fZQoaAZoCWgPQwh1eAjjpyFAwJSGlFKUaBVNLQFoFkdAb5OgK4QSSXV9lChoBmgJaA9DCNlBJa5jFC/AlIaUUpRoFU0tAWgWR0Bvk82DQJHBdX2UKGgGaAloD0MIU3jQ7LozS8CUhpRSlGgVTS0BaBZHQG+U+SbH6uZ1fZQoaAZoCWgPQwh/Ep87wZ46wJSGlFKUaBVNLQFoFkdAb5aVdHDrJXV9lChoBmgJaA9DCEDeq1YmrBXAlIaUUpRoFU0tAWgWR0BvnfFm4AjqdX2UKGgGaAloD0MI1IBB0qfxQMCUhpRSlGgVTS0BaBZHQG+eHpr1uix1fZQoaAZoCWgPQwhZaVIKui9AwJSGlFKUaBVNLQFoFkdAb59KeTV2BHV9lChoBmgJaA9DCAiwyK8fdj7AlIaUUpRoFU0tAWgWR0BvoOZRbbDedX2UKGgGaAloD0MITb7Z5sb0C0CUhpRSlGgVTS0BaBZHQG+oPNeMQ3B1fZQoaAZoCWgPQwito6oJos4LQJSGlFKUaBVNLQFoFkdAb6hqM3qA0HV9lChoBmgJaA9DCB/ylqsftz7AlIaUUpRoFU0tAWgWR0BvqZZbILgGdX2UKGgGaAloD0MI2NMOf006QMCUhpRSlGgVTS0BaBZHQHAnjbrTpgV1fZQoaAZoCWgPQwjwiuB/K5kDwJSGlFKUaBVNLQFoFkdAcCtI+GGmDXV9lChoBmgJaA9DCGiVmdL6WyxAlIaUUpRoFU0tAWgWR0BwK1+kP+XJdX2UKGgGaAloD0MIuCOcFrxsPcCUhpRSlGgVTS0BaBZHQHAr9a6jFhp1fZQoaAZoCWgPQwgawjHLfiWPQJSGlFKUaBVLBWgWR0BwLAwUQCjldX2UKGgGaAloD0MI1bFK6ZkmOMCUhpRSlGgVTS0BaBZHQHAsw6ZH/cZ1fZQoaAZoCWgPQwjkLVc/NqkwQJSGlFKUaBVNLQFoFkdAcDBzEaVD8nV9lChoBmgJaA9DCMJR8uocizDAlIaUUpRoFU0tAWgWR0BwMImdAgPmdX2UKGgGaAloD0MILiC0Hr7MH8CUhpRSlGgVTS0BaBZHQHAxNaUzKtB1fZQoaAZoCWgPQwgEVg4tsrU/wJSGlFKUaBVNLQFoFkdAcDHtozvZy3V9lChoBmgJaA9DCJZ2ai43eDrAlIaUUpRoFU0tAWgWR0BwNZuO0b97dX2UKGgGaAloD0MI7gc8MICgFUCUhpRSlGgVTS0BaBZHQHA1shPj4pN1fZQoaAZoCWgPQwgJi4o4napOwJSGlFKUaBVNLQFoFkdAcDZbz9S/CnV9lChoBmgJaA9DCHaMKy6O2jzAlIaUUpRoFU0tAWgWR0BwNxNUOuq4dX2UKGgGaAloD0MIIhgHl46VPMCUhpRSlGgVTS0BaBZHQHA6wI2OyVx1fZQoaAZoCWgPQwhwJNBgU2M+wJSGlFKUaBVNLQFoFkdAcDrXJHRTj3V9lChoBmgJaA9DCInwL4LGxEDAlIaUUpRoFU0tAWgWR0BwO4L6UJOWdX2UKGgGaAloD0MIe5+qQgNxOECUhpRSlGgVTS0BaBZHQHA8O5BkZrJ1fZQoaAZoCWgPQwiGcqJdhZxAwJSGlFKUaBVNLQFoFkdAcD/rmyPdVXV9lChoBmgJaA9DCH8WS5F8ZQHAlIaUUpRoFU0tAWgWR0BwQAI0IkZ8dX2UKGgGaAloD0MI1o7iHHU0KcCUhpRSlGgVTS0BaBZHQHBArXDm8ul1fZQoaAZoCWgPQwg9X7NcNkpAwJSGlFKUaBVNLQFoFkdAcEFlyR0U5HV9lChoBmgJaA9DCJc8npafQ49AlIaUUpRoFUsDaBZHQHBBc2zfJmx1fZQoaAZoCWgPQwhy+KQTCb4xwJSGlFKUaBVNLQFoFkdAcEUVVPva13V9lChoBmgJaA9DCC7IluXrGjjAlIaUUpRoFU0tAWgWR0BwRSvxH5JsdX2UKGgGaAloD0MIZTbIJMPdjkCUhpRSlGgVTSUBaBZHQHBFtHMEA5t1fZQoaAZoCWgPQwjj3vyGiTYjQJSGlFKUaBVNLQFoFkdAcEaZwn6VMXV9lChoBmgJaA9DCGAEjZlE3RjAlIaUUpRoFU0tAWgWR0BwSjigkC3gdX2UKGgGaAloD0MI/ilVouzrQMCUhpRSlGgVTS0BaBZHQHBKTzqbBoF1fZQoaAZoCWgPQwjJqgg3GW0+wJSGlFKUaBVNLQFoFkdAcKSwoLG7z3V9lChoBmgJaA9DCATHZdzU/DnAlIaUUpRoFU0tAWgWR0BwpZ0MgEEDdX2UKGgGaAloD0MIRyHJrN4xFECUhpRSlGgVTS0BaBZHQHCpP8IiTt91fZQoaAZoCWgPQwhRhxVu+Rg5wJSGlFKUaBVNLQFoFkdAcKlWAf+0gXV9lChoBmgJaA9DCB+EgHwJ3lPAlIaUUpRoFU0tAWgWR0Bwqd3FDOTrdX2UKGgGaAloD0MIXtVZLbDrRMCUhpRSlGgVTS0BaBZHQHCqxJRO1v51fZQoaAZoCWgPQwijrUoi+1A+wJSGlFKUaBVNLQFoFkdAcK5kN4JNTXV9lChoBmgJaA9DCM9Nm3EaIihAlIaUUpRoFU0tAWgWR0BwrnrSmZVodX2UKGgGaAloD0MIBp/m5EWsQMCUhpRSlGgVTS0BaBZHQHCvAwK0D2d1fZQoaAZoCWgPQwguVz82yU8AQJSGlFKUaBVNLQFoFkdAcK/rtE5QxnV9lChoBmgJaA9DCEa28/3U6B5AlIaUUpRoFU0tAWgWR0Bws4hfShJzdX2UKGgGaAloD0MIWg70UNs4QMCUhpRSlGgVTS0BaBZHQHCznvttygh1fZQoaAZoCWgPQwgujV94JftIwJSGlFKUaBVNLQFoFkdAcLQn6VMVUXV9lChoBmgJaA9DCC8YXHOnYI9AlIaUUpRoFUtJaBZHQHC0yU5dWyV1fZQoaAZoCWgPQwjRHi+kw1s/wJSGlFKUaBVNLQFoFkdAcLUQFs54nnV9lChoBmgJaA9DCDwW26Si8TNAlIaUUpRoFU0tAWgWR0BwuMhNdqtYdX2UKGgGaAloD0MIxjTTvU7aQcCUhpRSlGgVTS0BaBZHQHC5URSP2f11fZQoaAZoCWgPQwiu8C4X8TUswJSGlFKUaBVNLQFoFkdAcLny1NQCS3V9lChoBmgJaA9DCONtpddmG0HAlIaUUpRoFU0tAWgWR0BwujmbLEDRdX2UKGgGaAloD0MILnJPVxfDj0CUhpRSlGgVS7doFkdAcL1b8WKuS3V9lChoBmgJaA9DCAn6Cz1ihB5AlIaUUpRoFU0tAWgWR0BwvfF5v99/dX2UKGgGaAloD0MIz57L1CS0R8CUhpRSlGgVTS0BaBZHQHC+ekP+XJJ1fZQoaAZoCWgPQwhwtrkxPY6PQJSGlFKUaBVLIWgWR0BwvoMOPNmldX2UKGgGaAloD0MIUfhsHRwEJcCUhpRSlGgVTS0BaBZHQHC/HHzYmLN1fZQoaAZoCWgPQwhg5jv4iTM+wJSGlFKUaBVNLQFoFkdAcMKF5v99+nV9lChoBmgJaA9DCIZXkjzXM0DAlIaUUpRoFU0tAWgWR0Bww6O3lS0jdX2UKGgGaAloD0MI8db5t8sOIMCUhpRSlGgVTS0BaBZHQHDDrI91U2l1fZQoaAZoCWgPQwjN5QZDHTo9wJSGlFKUaBVNLQFoFkdAcMRE6kqMFXV9lChoBmgJaA9DCDEIrBxaRCNAlIaUUpRoFU0tAWgWR0BxGkCGN70GdX2UKGgGaAloD0MI+KqVCb9YNMCUhpRSlGgVTS0BaBZHQHEbc0P6KtR1fZQoaAZoCWgPQwjgumJGeCFAwJSGlFKUaBVNLQFoFkdAcRt8G9pRGnV9lChoBmgJaA9DCG5PkNju1idAlIaUUpRoFU0tAWgWR0BxHBXhfjS5dX2UKGgGaAloD0MICB10CYeqOMCUhpRSlGgVTS0BaBZHQHEff8/D+BJ1fZQoaAZoCWgPQwjN6bKY2NJEwJSGlFKUaBVNLQFoFkdAcSCck+otMHV9lChoBmgJaA9DCE92M6MfsULAlIaUUpRoFU0tAWgWR0BxIKViWmgrdX2UKGgGaAloD0MIAi1dwTZaJcCUhpRSlGgVTS0BaBZHQHEhPra/RE51fZQoaAZoCWgPQwhV3/lFCXY8wJSGlFKUaBVNLQFoFkdAcSSnw5NoJ3V9lChoBmgJaA9DCBqJ0Ag2LjbAlIaUUpRoFU0tAWgWR0BxJcPy08eTdX2UKGgGaAloD0MIEaYol8afNsCUhpRSlGgVTS0BaBZHQHElzNMXaal1fZQoaAZoCWgPQwgz+tFwyog9wJSGlFKUaBVNLQFoFkdAcSZmr8zhxnV9lChoBmgJaA9DCHP0+L1N7xbAlIaUUpRoFU0tAWgWR0BxKdQBPsRhdX2UKGgGaAloD0MI+YIWEjDKOMCUhpRSlGgVTS0BaBZHQHEq8rZrYXh1fZQoaAZoCWgPQwjlJ9U+HYcoQJSGlFKUaBVNLQFoFkdAcSr7kXDWLHV9lChoBmgJaA9DCEWEfxE0piVAlIaUUpRoFU0tAWgWR0BxK5YvFm4BdX2UKGgGaAloD0MInYL8bKQHj0CUhpRSlGgVS2doFkdAcSy5eqrBCXV9lChoBmgJaA9DCPMFLSTg6I9AlIaUUpRoFUtlaBZHQHEsuVxCIDZ1fZQoaAZoCWgPQwhDVrd6TrocQJSGlFKUaBVNLQFoFkdAcS8DsMRYinV9lChoBmgJaA9DCIS8HkwKn49AlIaUUpRoFUveaBZHQHEwi1JDmbN1fZQoaAZoCWgPQwh6/Ul87iw+wJSGlFKUaBVNLQFoFkdAcTDEWIoE0XV9lChoBmgJaA9DCMdHizOGES7AlIaUUpRoFU0tAWgWR0BxMegdwNsndX2UKGgGaAloD0MIv4BeuHORO8CUhpRSlGgVTS0BaBZHQHE0MOby6MB1fZQoaAZoCWgPQwgjgnFw6UJMwJSGlFKUaBVNLQFoFkdAcTW3mmtQsXV9lChoBmgJaA9DCJS9pZwvbkDAlIaUUpRoFU0tAWgWR0BxNfCxeLNwdX2UKGgGaAloD0MIAi1dwTZWNMCUhpRSlGgVTS0BaBZHQHE3FFH8TBZ1fZQoaAZoCWgPQwihn6nXLQRAwJSGlFKUaBVNLQFoFkdAcTlcrAgxJ3V9lChoBmgJaA9DCEkPQ6vzbI5AlIaUUpRoFU0iAWgWR0BxOrQw9JSSdX2UKGgGaAloD0MIP1dbsb/snj+UhpRSlGgVTS0BaBZHQHE7HUtqYZ51fZQoaAZoCWgPQwg2Bp0QOtA9wJSGlFKUaBVNLQFoFkdAcTxAeq7yx3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 370, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.5, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -8.147911949157733, "std_reward": 23.08695262244385, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-14T14:09:15.645714"}
 
1
+ {"mean_reward": -75.97438058853132, "std_reward": 92.16382369009777, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-14T14:20:42.634627"}