Upload model to Hugging Face
Browse files- BC-harcodemap-punish-stagnant.zip +2 -2
- BC-harcodemap-punish-stagnant/data +16 -16
- BC-harcodemap-punish-stagnant/policy.optimizer.pth +1 -1
- BC-harcodemap-punish-stagnant/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
BC-harcodemap-punish-stagnant.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08babf05e8c32cf5bef53385af8e4c6aef6733c3a2c66dcf0e79cd41e6c36cdb
|
3 |
+
size 44143
|
BC-harcodemap-punish-stagnant/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
@@ -48,7 +48,7 @@
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -70,7 +70,7 @@
|
|
70 |
"_current_progress_remaining": -0.010346666666666726,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc26c2f11b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc26c2f1240>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc26c2f12d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc26c2f1360>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc26c2f13f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc26c2f1480>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc26c2f1510>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc26c2f15a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc26c2f1630>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc26c2f16c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc26c2f1750>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc26c2f17e0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc26c2e2100>"
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1681935267510309066,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAPGS90LNaz+/AADIQrMhd0IAAMhCA1/6QfG45EEShhxC1dSFQgAAyELnxvRCcJ6TPwAAyELU3gJCO2UPQhPyYkKlZYdCAADIQgXarUL+2nRCE4/cQj97UL8AAMhCG+xzQgAAyEKH6HNCbMJdQpBugUIAAMhCAADIQibkykJnEAdADcqBQsN8lEIAAMhCAADIQgAAyEL05WJCY2RMQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
70 |
"_current_progress_remaining": -0.010346666666666726,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYr1RK5wJkcCUhpRSlIwBbJRNLQGMAXSUR0CShQgpz90jdX2UKGgGaAloD0MIcLa5MR2IjcCUhpRSlGgVTS0BaBZHQJKFDAfuCwt1fZQoaAZoCWgPQwitpYC078eTwJSGlFKUaBVNLQFoFkdAkocPdVNpNHV9lChoBmgJaA9DCNJT5BBR9YTAlIaUUpRoFU0tAWgWR0CSjOf4h2W6dX2UKGgGaAloD0MIJXoZxfJrmcCUhpRSlGgVS35oFkdAkpO4QjD8+HV9lChoBmgJaA9DCJW6ZByzdpDAlIaUUpRoFU0tAWgWR0CSlVYl6Z6VdX2UKGgGaAloD0MIyJQPQdU/lMCUhpRSlGgVTS0BaBZHQJKVWGXXyy51fZQoaAZoCWgPQwhoklhS/seSwJSGlFKUaBVNLQFoFkdAkpcyNKh+OXV9lChoBmgJaA9DCLKFIAe1n5PAlIaUUpRoFU0tAWgWR0CSpE+wkgOjdX2UKGgGaAloD0MIxlIkX8lajMCUhpRSlGgVTS0BaBZHQJKmLwazeGh1fZQoaAZoCWgPQwgiVRSvEneRwJSGlFKUaBVNLQFoFkdAkqYy9h7VrnV9lChoBmgJaA9DCFciUP1jq4/AlIaUUpRoFU0tAWgWR0CSp2GiYb84dX2UKGgGaAloD0MIFK+ytglWj8CUhpRSlGgVTS0BaBZHQJKw0MmWt2d1fZQoaAZoCWgPQwjdPxaiU8+ewJSGlFKUaBVL8mgWR0CSsT6GQCCBdX2UKGgGaAloD0MI/aTap+PBi8CUhpRSlGgVTS0BaBZHQJKygbzbvgF1fZQoaAZoCWgPQwhbI4JxkOSTwJSGlFKUaBVNLQFoFkdAkrKEExIrfHV9lChoBmgJaA9DCKeVQiDn9pPAlIaUUpRoFU0tAWgWR0CSwOnezlcRdX2UKGgGaAloD0MIZW8p56uUkMCUhpRSlGgVTS0BaBZHQJLhmdPLxI91fZQoaAZoCWgPQwiZYaOsz22SwJSGlFKUaBVNLQFoFkdAkuI4fW+XaHV9lChoBmgJaA9DCE6XxcS2vZLAlIaUUpRoFU0tAWgWR0CS4jlf7aZhdX2UKGgGaAloD0MIjXqIRjcQjsCUhpRSlGgVTS0BaBZHQJLsmSFGoaV1fZQoaAZoCWgPQwheKjbm9eiRwJSGlFKUaBVNLQFoFkdAkuz72Dg62nV9lChoBmgJaA9DCLDHREoTmZLAlIaUUpRoFU0tAWgWR0CS7jZNfw7UdX2UKGgGaAloD0MIJa34hqIlkcCUhpRSlGgVTS0BaBZHQJLuOgPEsJ91fZQoaAZoCWgPQwjZzYx+VDGOwJSGlFKUaBVNLQFoFkdAkvs/a+N96XV9lChoBmgJaA9DCE4lA0AVwpHAlIaUUpRoFU0tAWgWR0CS+5PepGWldX2UKGgGaAloD0MIZOYCl4dmkMCUhpRSlGgVTS0BaBZHQJL8Z3os7Mh1fZQoaAZoCWgPQwjBG9KoYAaTwJSGlFKUaBVNLQFoFkdAkvxpcC5mRXV9lChoBmgJaA9DCG8Sg8DqnJLAlIaUUpRoFU0tAWgWR0CTCrz5oGpudX2UKGgGaAloD0MITaCIRUzQk8CUhpRSlGgVTS0BaBZHQJMLQgfU4Jh1fZQoaAZoCWgPQwi2MXbCK1qRwJSGlFKUaBVNLQFoFkdAkwylme18cHV9lChoBmgJaA9DCDDw3HtYUZLAlIaUUpRoFU0tAWgWR0CTDKlu3trsdX2UKGgGaAloD0MIGR2QhP2ijMCUhpRSlGgVTS0BaBZHQJMb69cry2B1fZQoaAZoCWgPQwgHzhlRSmeSwJSGlFKUaBVNLQFoFkdAkxwyosI3SHV9lChoBmgJaA9DCFU01v4erpHAlIaUUpRoFU0tAWgWR0CTHUY6XBxhdX2UKGgGaAloD0MIvMlv0Skuk8CUhpRSlGgVTS0BaBZHQJMdSSNfgJl1fZQoaAZoCWgPQwjfNehLX+CdwJSGlFKUaBVL7WgWR0CTJjhl18sudX2UKGgGaAloD0MIP1bw2xBVhMCUhpRSlGgVTS0BaBZHQJMn8qaw2VF1fZQoaAZoCWgPQwj7k/jcSZuTwJSGlFKUaBVNLQFoFkdAkyhbGFSKnHV9lChoBmgJaA9DCLH34osm45LAlIaUUpRoFU0tAWgWR0CTKZHLA57xdX2UKGgGaAloD0MIo1nZPtT8kcCUhpRSlGgVTS0BaBZHQJM1T3ztkWh1fZQoaAZoCWgPQwh5AmGnKKaRwJSGlFKUaBVNLQFoFkdAkzcHeWOZLXV9lChoBmgJaA9DCHnKarr+o4zAlIaUUpRoFU0tAWgWR0CTN3FMIu5CdX2UKGgGaAloD0MIVrjlI2k4kcCUhpRSlGgVTS0BaBZHQJM4pwQ176Z1fZQoaAZoCWgPQwiwVu2akByewJSGlFKUaBVL+mgWR0CTQt1SflIVdX2UKGgGaAloD0MIkdEBSWhqkMCUhpRSlGgVTS0BaBZHQJNsB6IFeOZ1fZQoaAZoCWgPQwjZl2w82EuQwJSGlFKUaBVNLQFoFkdAk2w7mp2lmHV9lChoBmgJaA9DCPQXesQ4RJLAlIaUUpRoFU0tAWgWR0CTbXAyEcsEdX2UKGgGaAloD0MIjIaMR7mLlcCUhpRSlGgVTS0BaBZHQJN3WpAD7qJ1fZQoaAZoCWgPQwgmxjL9UqSAwJSGlFKUaBVNLQFoFkdAk3sD8HfMwHV9lChoBmgJaA9DCKwfm+SndoXAlIaUUpRoFU0tAWgWR0CTe1AS39aVdX2UKGgGaAloD0MIogxVMVUpkMCUhpRSlGgVTS0BaBZHQJN8PgXMyJt1fZQoaAZoCWgPQwgqV3iX6wicwJSGlFKUaBVL6mgWR0CTgZf0VafSdX2UKGgGaAloD0MIbECEuLL5jsCUhpRSlGgVTS0BaBZHQJOI1s9B8hN1fZQoaAZoCWgPQwhm2v6VteKNwJSGlFKUaBVNLQFoFkdAk4k5XdTHbXV9lChoBmgJaA9DCOif4GLFuJHAlIaUUpRoFU0tAWgWR0CTimQJXyRTdX2UKGgGaAloD0MIMZi/QsZJjsCUhpRSlGgVTS0BaBZHQJOQvHn2ZiN1fZQoaAZoCWgPQwh9dVWgBn6SwJSGlFKUaBVNLQFoFkdAk5hgSamXPnV9lChoBmgJaA9DCNzUQPOJl5DAlIaUUpRoFU0tAWgWR0CTmM8E3bVSdX2UKGgGaAloD0MIbAa4INsPjMCUhpRSlGgVTS0BaBZHQJOaF/LDAJt1fZQoaAZoCWgPQwhpVrYPyX6RwJSGlFKUaBVNLQFoFkdAk6E0RJ2+wnV9lChoBmgJaA9DCHY1ecpay5PAlIaUUpRoFU0tAWgWR0CTqg4GD+R6dX2UKGgGaAloD0MIgjgPJ8BikcCUhpRSlGgVTS0BaBZHQJOqYtjCpFV1fZQoaAZoCWgPQwgNjLysSTWNwJSGlFKUaBVNLQFoFkdAk6u9r433pXV9lChoBmgJaA9DCGWoiqnUUZDAlIaUUpRoFU0tAWgWR0CTsfofSx7idX2UKGgGaAloD0MI46lHGpyyj8CUhpRSlGgVTS0BaBZHQJO6BiTdLxt1fZQoaAZoCWgPQwgxs89jVLiUwJSGlFKUaBVNLQFoFkdAk7psRYigTXV9lChoBmgJaA9DCN9wH7nFiJDAlIaUUpRoFU0tAWgWR0CTu7YywfQsdX2UKGgGaAloD0MIYAMixDWZk8CUhpRSlGgVTS0BaBZHQJPCNx//ech1fZQoaAZoCWgPQwjjqrLv2q2UwJSGlFKUaBVNLQFoFkdAk8sIQrc0tXV9lChoBmgJaA9DCPLOoQxFuZLAlIaUUpRoFU0tAWgWR0CTy37IDHOsdX2UKGgGaAloD0MIGmmpvB35ksCUhpRSlGgVTS0BaBZHQJPNITwlSjx1fZQoaAZoCWgPQwiBs5QshwuOwJSGlFKUaBVNLQFoFkdAk9JSfcvdunV9lChoBmgJaA9DCCP1nspZS5PAlIaUUpRoFU0tAWgWR0CT+8225QP7dX2UKGgGaAloD0MIpG/SNEiVkcCUhpRSlGgVTS0BaBZHQJP8GHgxagV1fZQoaAZoCWgPQwilEp7Q62OKwJSGlFKUaBVNLQFoFkdAk/z4fbKzRnV9lChoBmgJaA9DCGU3M/oRB4zAlIaUUpRoFU0tAWgWR0CUAnRtgrpadX2UKGgGaAloD0MIPfGcLfDMm8CUhpRSlGgVS/ZoFkdAlAbmOyVv/HV9lChoBmgJaA9DCB5OYDpNXZDAlIaUUpRoFU0tAWgWR0CUCITV2A5JdX2UKGgGaAloD0MInu3RG+6uj8CUhpRSlGgVTS0BaBZHQJQJW0LMLWt1fZQoaAZoCWgPQwgK2uTwyUeLwJSGlFKUaBVNLQFoFkdAlA3ElzEJjXV9lChoBmgJaA9DCNKrAUoz55DAlIaUUpRoFU0tAWgWR0CUE0nWJ79idX2UKGgGaAloD0MItTS3QniyjcCUhpRSlGgVTS0BaBZHQJQV5SBK+SN1fZQoaAZoCWgPQwjyW3SylDySwJSGlFKUaBVNLQFoFkdAlBfGG/N7jXV9lChoBmgJaA9DCNHrT+IjMpbAlIaUUpRoFU0tAWgWR0CUHotqHoHLdX2UKGgGaAloD0MIU8vW+gI0lMCUhpRSlGgVTS0BaBZHQJQkq22G7Bh1fZQoaAZoCWgPQwhpqifzP9mTwJSGlFKUaBVNLQFoFkdAlCdUlzEJjXV9lChoBmgJaA9DCNANTdnJf5TAlIaUUpRoFU0tAWgWR0CUKN/NJOFhdX2UKGgGaAloD0MI+pgPCNTck8CUhpRSlGgVTS0BaBZHQJQvYxIre691fZQoaAZoCWgPQwibAS7I1peRwJSGlFKUaBVNLQFoFkdAlDUT7yhBaHV9lChoBmgJaA9DCFA25QoPNpbAlIaUUpRoFU0tAWgWR0CUN8ZgG8mKdX2UKGgGaAloD0MIxLXawx5ykcCUhpRSlGgVTS0BaBZHQJQ5mRyOrAB1fZQoaAZoCWgPQwjFG5lHvheTwJSGlFKUaBVNLQFoFkdAlD//kvK2a3V9lChoBmgJaA9DCFJ95xdlopDAlIaUUpRoFU0tAWgWR0CURSvsqrimdX2UKGgGaAloD0MIPNo4Yo2skMCUhpRSlGgVTS0BaBZHQJRG6P0Zm7J1fZQoaAZoCWgPQwiny2JiI2CUwJSGlFKUaBVNLQFoFkdAlEfLgflp5HV9lChoBmgJaA9DCDlCBvL86pHAlIaUUpRoFU0tAWgWR0CUS+cW0qpcdX2UKGgGaAloD0MILJrOTnZFkMCUhpRSlGgVTS0BaBZHQJRRZuAI6bR1fZQoaAZoCWgPQwj6sx8pUrScwJSGlFKUaBVL/WgWR0CUUz0gr6LwdX2UKGgGaAloD0MIZAPpYkMRlMCUhpRSlGgVTS0BaBZHQJRUPcFhXsB1ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
BC-harcodemap-punish-stagnant/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 18973
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b8eb43ba701dc3d95dc28457be94efeec32cba17df799af9914dc88044743e3
|
3 |
size 18973
|
BC-harcodemap-punish-stagnant/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 9295
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:407a49af64767f58c79e982f01202c1579daae7f4ba2c4d7613b56c6cdf9f3cc
|
3 |
size 9295
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: RoombaAToB-harcodemap-punish-stagnant
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: RoombaAToB-harcodemap-punish-stagnant
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -2104.52 +/- 0.00
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f44e0df11b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f44e0df1240>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f44e0df12d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f44e0df1360>", "_build": "<function ActorCriticPolicy._build at 0x7f44e0df13f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f44e0df1480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f44e0df1510>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f44e0df15a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f44e0df1630>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f44e0df16c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f44e0df1750>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f44e0df17e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f44e101ffc0>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 303104, "_total_timesteps": 300000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681933215401843977, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAJEh9EKqtgXAAADIQgAAyEIAAMhCcvt8QgAAyEKa7CRCmuwkQhZoV0KRIfRCiKD+vwAAyEIAAMhCpLSpQnL7fEIwRmJCAAAgQqziMkIWaFdCkSH0Qqq2BcAAAMhCAADIQgAAyEJy+3xCAADIQprsJEKa7CRCFmhXQpEh9EKqtgXAAADIQgAAyEIAAMhCcvt8QgAAyEKa7CRCmuwkQhZoV0KUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.010346666666666726, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITntKzklYcsCUhpRSlIwBbJRNLQGMAXSUR0CS5lE74i5edX2UKGgGaAloD0MI1PGYgUpecsCUhpRSlGgVTS0BaBZHQJLnKmJm/WV1fZQoaAZoCWgPQwghyhe00BJywJSGlFKUaBVNLQFoFkdAkuocFEAo5XV9lChoBmgJaA9DCC9rYoGvOHLAlIaUUpRoFU0tAWgWR0CS7+S4e9zwdX2UKGgGaAloD0MI1PGYgUqecsCUhpRSlGgVTS0BaBZHQJL2PhP0qYt1fZQoaAZoCWgPQwhAhLhytk1zwJSGlFKUaBVNLQFoFkdAkvbtCiRGMHV9lChoBmgJaA9DCEzHnGdsXnLAlIaUUpRoFU0tAWgWR0CS+X9GZuyedX2UKGgGaAloD0MI8WQ3M3ozcsCUhpRSlGgVTS0BaBZHQJL95lkH2RJ1fZQoaAZoCWgPQwhcHJWbKH5ywJSGlFKUaBVNLQFoFkdAkwJEL+glGHV9lChoBmgJaA9DCFKbOLlfCnPAlIaUUpRoFU0tAWgWR0CTAqczqKP5dX2UKGgGaAloD0MIUkmdgCYscsCUhpRSlGgVTS0BaBZHQJMEY3Ns3yZ1fZQoaAZoCWgPQwgEV3kCoX1ywJSGlFKUaBVNLQFoFkdAkwdz+R5kb3V9lChoBmgJaA9DCPH1tS71D3PAlIaUUpRoFU0tAWgWR0CTDQX+2mYTdX2UKGgGaAloD0MIL4UHza5ScsCUhpRSlGgVTS0BaBZHQJMNoWweNkx1fZQoaAZoCWgPQwitwmaAi+ZxwJSGlFKUaBVNLQFoFkdAkxCLMTviLnV9lChoBmgJaA9DCArZeRtby3LAlIaUUpRoFU0tAWgWR0CTFV72criEdX2UKGgGaAloD0MIuK8D54wycsCUhpRSlGgVTS0BaBZHQJMbRcHGCI11fZQoaAZoCWgPQwhIbeLkPmxzwJSGlFKUaBVNLQFoFkdAkxvgSSNfgXV9lChoBmgJaA9DCMOC+wGPZHLAlIaUUpRoFU0tAWgWR0CTHsPpY9xIdX2UKGgGaAloD0MIRKhSs0cGcsCUhpRSlGgVTS0BaBZHQJNF/lJYkmh1fZQoaAZoCWgPQwhMx5xnbF5ywJSGlFKUaBVNLQFoFkdAk0vyFj/dZnV9lChoBmgJaA9DCMzSTs0lJnLAlIaUUpRoFU0tAWgWR0CTTI0dzXBhdX2UKGgGaAloD0MIcVmFzcBrcsCUhpRSlGgVTS0BaBZHQJNPTuZ1FH91fZQoaAZoCWgPQwjw3eaNE4BzwJSGlFKUaBVNLQFoFkdAk1Qr1RLsbHV9lChoBmgJaA9DCH7gKk+gl3LAlIaUUpRoFU0tAWgWR0CTWr8fV7QcdX2UKGgGaAloD0MIyR6hZkgscsCUhpRSlGgVTS0BaBZHQJNbZoIv8Il1fZQoaAZoCWgPQwhVF/AyAwBywJSGlFKUaBVNLQFoFkdAk14Dc2zfJnV9lChoBmgJaA9DCIhKI2Y283HAlIaUUpRoFU0tAWgWR0CTY/tvn8sMdX2UKGgGaAloD0MIyR6hZkgMcsCUhpRSlGgVTS0BaBZHQJNrdQqI7/51fZQoaAZoCWgPQwjGUE60a1hywJSGlFKUaBVNLQFoFkdAk2xF2FFlTXV9lChoBmgJaA9DCJbrbTMVGXLAlIaUUpRoFU0tAWgWR0CTb0qyWzF/dX2UKGgGaAloD0MIteGwNLBecsCUhpRSlGgVTS0BaBZHQJN02CJ40Mx1fZQoaAZoCWgPQwhg6udNBTJywJSGlFKUaBVNLQFoFkdAk3lrCBPKuHV9lChoBmgJaA9DCJbrbTMVGXLAlIaUUpRoFU0tAWgWR0CTefLteD3/dX2UKGgGaAloD0MIXByVmyh+csCUhpRSlGgVTS0BaBZHQJN8h0q6OHZ1fZQoaAZoCWgPQwiZnxua8iJywJSGlFKUaBVNLQFoFkdAk4DZwwTM7nV9lChoBmgJaA9DCDI5tTOMDHLAlIaUUpRoFU0tAWgWR0CThwITGo73dX2UKGgGaAloD0MIBkg0gWKLcsCUhpRSlGgVTS0BaBZHQJOHtl6JIlN1fZQoaAZoCWgPQwjJBPwaSTJywJSGlFKUaBVNLQFoFkdAk4rCXhOxjnV9lChoBmgJaA9DCMDOTZuxCnPAlIaUUpRoFU0tAWgWR0CTj6FL39JjdX2UKGgGaAloD0MI9rUuNcJ3csCUhpRSlGgVTS0BaBZHQJOWg9KVY6p1fZQoaAZoCWgPQwh324XmevlxwJSGlFKUaBVNLQFoFkdAk5cGc8TzunV9lChoBmgJaA9DCGKelbTiK3LAlIaUUpRoFU0tAWgWR0CTmdFWGRFJdX2UKGgGaAloD0MIV3ptNtZucsCUhpRSlGgVTS0BaBZHQJOfmQzUI9l1fZQoaAZoCWgPQwgst7Qa0j5ywJSGlFKUaBVNLQFoFkdAk6XVYuCf6HV9lChoBmgJaA9DCH1dhv80x3HAlIaUUpRoFU0tAWgWR0CTppffGdZrdX2UKGgGaAloD0MIVP1K5wMmcsCUhpRSlGgVTS0BaBZHQJOpfjYI0Il1fZQoaAZoCWgPQwhA2v8AazJywJSGlFKUaBVNLQFoFkdAk9AIjKPn0XV9lChoBmgJaA9DCPmDgeeeS3LAlIaUUpRoFU0tAWgWR0CT1flS0jTsdX2UKGgGaAloD0MIqOUHrrLRcsCUhpRSlGgVTS0BaBZHQJPWvCaZx711fZQoaAZoCWgPQwhinpW04itywJSGlFKUaBVNLQFoFkdAk9knYxtYS3V9lChoBmgJaA9DCLtjsU1qDHLAlIaUUpRoFU0tAWgWR0CT3iKrq+rVdX2UKGgGaAloD0MI6+I2GsAlcsCUhpRSlGgVTS0BaBZHQJPkuO0b9611fZQoaAZoCWgPQwhMx5xnbH5ywJSGlFKUaBVNLQFoFkdAk+V/ZM+NcXV9lChoBmgJaA9DCGDq500FYnLAlIaUUpRoFU0tAWgWR0CT6JaXrt3OdX2UKGgGaAloD0MIkE/IzluRcsCUhpRSlGgVTS0BaBZHQJPtBQZXMhZ1fZQoaAZoCWgPQwj2tS41wmdywJSGlFKUaBVNLQFoFkdAk/J/VurIYHV9lChoBmgJaA9DCNelRugneHLAlIaUUpRoFU0tAWgWR0CT8wUoa1kUdX2UKGgGaAloD0MIPiZSmo1YcsCUhpRSlGgVTS0BaBZHQJP1dZid8Rd1fZQoaAZoCWgPQwhq9kArMD11wJSGlFKUaBVNLQFoFkdAk/ry1mapgnV9lChoBmgJaA9DCIV80LNZH3LAlIaUUpRoFU0tAWgWR0CUAd2xY7q6dX2UKGgGaAloD0MIpIy4APROcsCUhpRSlGgVTS0BaBZHQJQCcU+LWI51fZQoaAZoCWgPQwjGUE60a1hywJSGlFKUaBVNLQFoFkdAlASnjU/fO3V9lChoBmgJaA9DCMkE/BpJUnLAlIaUUpRoFU0tAWgWR0CUCVaEzwc6dX2UKGgGaAloD0MIzNJOzSUGcsCUhpRSlGgVTS0BaBZHQJQPa+SKWLR1fZQoaAZoCWgPQwh8LH3owp1ywJSGlFKUaBVNLQFoFkdAlA/eOGTLXHV9lChoBmgJaA9DCOgU5GfjUXLAlIaUUpRoFU0tAWgWR0CUElPqLS/kdX2UKGgGaAloD0MIFTyFXKm9c8CUhpRSlGgVTS0BaBZHQJQXPlZHNHJ1fZQoaAZoCWgPQwiZnxua8hJywJSGlFKUaBVNLQFoFkdAlB1YHHFPznV9lChoBmgJaA9DCAclzLR9UXLAlIaUUpRoFU0tAWgWR0CUHfkHUtqYdX2UKGgGaAloD0MIpHITtfSkcsCUhpRSlGgVTS0BaBZHQJQhAznA6+51fZQoaAZoCWgPQwgQdR+AFFNywJSGlFKUaBVNLQFoFkdAlCVoWYWtVHV9lChoBmgJaA9DCPYNTG6Ur3PAlIaUUpRoFU0tAWgWR0CUKha72+PBdX2UKGgGaAloD0MI+YOB555rcsCUhpRSlGgVTS0BaBZHQJQqpMqSX+l1fZQoaAZoCWgPQwi14bA0sD5ywJSGlFKUaBVNLQFoFkdAlFD/MbFS9HV9lChoBmgJaA9DCBiyutWzoHPAlIaUUpRoFU0tAWgWR0CUVk6cy31BdX2UKGgGaAloD0MIr1+wG/awcsCUhpRSlGgVTS0BaBZHQJRdXU6PsAx1fZQoaAZoCWgPQwgkRzoDo5tywJSGlFKUaBVNLQFoFkdAlF4bngYP5HV9lChoBmgJaA9DCGq932gHxHLAlIaUUpRoFU0tAWgWR0CUYEMoc7yQdX2UKGgGaAloD0MIBFd5AqHVcsCUhpRSlGgVTS0BaBZHQJRkGXrt3Oh1fZQoaAZoCWgPQwhOe0rOSVhywJSGlFKUaBVNLQFoFkdAlGjW6PKdQXV9lChoBmgJaA9DCAclzLR9kXLAlIaUUpRoFU0tAWgWR0CUaZEvTPSldX2UKGgGaAloD0MI9rUuNcKncsCUhpRSlGgVTS0BaBZHQJRsHUG3WnV1fZQoaAZoCWgPQwjJHqFmSAxywJSGlFKUaBVNLQFoFkdAlHGnwLE1mHV9lChoBmgJaA9DCJbOh2cJWHPAlIaUUpRoFU0tAWgWR0CUeNtEXtSidX2UKGgGaAloD0MIRRFStzNUc8CUhpRSlGgVTS0BaBZHQJR5oEs8PnV1fZQoaAZoCWgPQwjRXKeR1oRxwJSGlFKUaBVNLQFoFkdAlHx+On2qUHV9lChoBmgJaA9DCEUr9wKztnLAlIaUUpRoFU0tAWgWR0CUgWIz3yqddX2UKGgGaAloD0MI6BTkZ+ORcsCUhpRSlGgVTS0BaBZHQJSIF3LV4HJ1fZQoaAZoCWgPQwi+vtalRkdzwJSGlFKUaBVNLQFoFkdAlIiHd0q6OHV9lChoBmgJaA9DCLivA+eMEnLAlIaUUpRoFU0tAWgWR0CUixkrwvxpdX2UKGgGaAloD0MIHhZqTfNYcsCUhpRSlGgVTS0BaBZHQJSPetZFG5N1fZQoaAZoCWgPQwgEV3kCob1ywJSGlFKUaBVNLQFoFkdAlJVHSKFZgXV9lChoBmgJaA9DCJj5Dn6iPHPAlIaUUpRoFU0tAWgWR0CUlc9PDYRNdX2UKGgGaAloD0MI5WA2AQZ4csCUhpRSlGgVTS0BaBZHQJSYTEsJ6Y51fZQoaAZoCWgPQwh8LH3own1ywJSGlFKUaBVNLQFoFkdAlJv3WjGkvnV9lChoBmgJaA9DCHA/4IHBcXLAlIaUUpRoFU0tAWgWR0CUoDUrkKeDdX2UKGgGaAloD0MIL2tiga9YcsCUhpRSlGgVTS0BaBZHQJSgvOlfqot1fZQoaAZoCWgPQwiW620zFRlywJSGlFKUaBVNLQFoFkdAlKJQS39aU3V9lChoBmgJaA9DCCy3tBrSfnLAlIaUUpRoFU0tAWgWR0CUpcNipeeGdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 370, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc26c2f11b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc26c2f1240>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc26c2f12d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc26c2f1360>", "_build": "<function ActorCriticPolicy._build at 0x7fc26c2f13f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc26c2f1480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc26c2f1510>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc26c2f15a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc26c2f1630>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc26c2f16c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc26c2f1750>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc26c2f17e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc26c2e2100>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 303104, "_total_timesteps": 300000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681935267510309066, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAPGS90LNaz+/AADIQrMhd0IAAMhCA1/6QfG45EEShhxC1dSFQgAAyELnxvRCcJ6TPwAAyELU3gJCO2UPQhPyYkKlZYdCAADIQgXarUL+2nRCE4/cQj97UL8AAMhCG+xzQgAAyEKH6HNCbMJdQpBugUIAAMhCAADIQibkykJnEAdADcqBQsN8lEIAAMhCAADIQgAAyEL05WJCY2RMQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.010346666666666726, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYr1RK5wJkcCUhpRSlIwBbJRNLQGMAXSUR0CShQgpz90jdX2UKGgGaAloD0MIcLa5MR2IjcCUhpRSlGgVTS0BaBZHQJKFDAfuCwt1fZQoaAZoCWgPQwitpYC078eTwJSGlFKUaBVNLQFoFkdAkocPdVNpNHV9lChoBmgJaA9DCNJT5BBR9YTAlIaUUpRoFU0tAWgWR0CSjOf4h2W6dX2UKGgGaAloD0MIJXoZxfJrmcCUhpRSlGgVS35oFkdAkpO4QjD8+HV9lChoBmgJaA9DCJW6ZByzdpDAlIaUUpRoFU0tAWgWR0CSlVYl6Z6VdX2UKGgGaAloD0MIyJQPQdU/lMCUhpRSlGgVTS0BaBZHQJKVWGXXyy51fZQoaAZoCWgPQwhoklhS/seSwJSGlFKUaBVNLQFoFkdAkpcyNKh+OXV9lChoBmgJaA9DCLKFIAe1n5PAlIaUUpRoFU0tAWgWR0CSpE+wkgOjdX2UKGgGaAloD0MIxlIkX8lajMCUhpRSlGgVTS0BaBZHQJKmLwazeGh1fZQoaAZoCWgPQwgiVRSvEneRwJSGlFKUaBVNLQFoFkdAkqYy9h7VrnV9lChoBmgJaA9DCFciUP1jq4/AlIaUUpRoFU0tAWgWR0CSp2GiYb84dX2UKGgGaAloD0MIFK+ytglWj8CUhpRSlGgVTS0BaBZHQJKw0MmWt2d1fZQoaAZoCWgPQwjdPxaiU8+ewJSGlFKUaBVL8mgWR0CSsT6GQCCBdX2UKGgGaAloD0MI/aTap+PBi8CUhpRSlGgVTS0BaBZHQJKygbzbvgF1fZQoaAZoCWgPQwhbI4JxkOSTwJSGlFKUaBVNLQFoFkdAkrKEExIrfHV9lChoBmgJaA9DCKeVQiDn9pPAlIaUUpRoFU0tAWgWR0CSwOnezlcRdX2UKGgGaAloD0MIZW8p56uUkMCUhpRSlGgVTS0BaBZHQJLhmdPLxI91fZQoaAZoCWgPQwiZYaOsz22SwJSGlFKUaBVNLQFoFkdAkuI4fW+XaHV9lChoBmgJaA9DCE6XxcS2vZLAlIaUUpRoFU0tAWgWR0CS4jlf7aZhdX2UKGgGaAloD0MIjXqIRjcQjsCUhpRSlGgVTS0BaBZHQJLsmSFGoaV1fZQoaAZoCWgPQwheKjbm9eiRwJSGlFKUaBVNLQFoFkdAkuz72Dg62nV9lChoBmgJaA9DCLDHREoTmZLAlIaUUpRoFU0tAWgWR0CS7jZNfw7UdX2UKGgGaAloD0MIJa34hqIlkcCUhpRSlGgVTS0BaBZHQJLuOgPEsJ91fZQoaAZoCWgPQwjZzYx+VDGOwJSGlFKUaBVNLQFoFkdAkvs/a+N96XV9lChoBmgJaA9DCE4lA0AVwpHAlIaUUpRoFU0tAWgWR0CS+5PepGWldX2UKGgGaAloD0MIZOYCl4dmkMCUhpRSlGgVTS0BaBZHQJL8Z3os7Mh1fZQoaAZoCWgPQwjBG9KoYAaTwJSGlFKUaBVNLQFoFkdAkvxpcC5mRXV9lChoBmgJaA9DCG8Sg8DqnJLAlIaUUpRoFU0tAWgWR0CTCrz5oGpudX2UKGgGaAloD0MITaCIRUzQk8CUhpRSlGgVTS0BaBZHQJMLQgfU4Jh1fZQoaAZoCWgPQwi2MXbCK1qRwJSGlFKUaBVNLQFoFkdAkwylme18cHV9lChoBmgJaA9DCDDw3HtYUZLAlIaUUpRoFU0tAWgWR0CTDKlu3trsdX2UKGgGaAloD0MIGR2QhP2ijMCUhpRSlGgVTS0BaBZHQJMb69cry2B1fZQoaAZoCWgPQwgHzhlRSmeSwJSGlFKUaBVNLQFoFkdAkxwyosI3SHV9lChoBmgJaA9DCFU01v4erpHAlIaUUpRoFU0tAWgWR0CTHUY6XBxhdX2UKGgGaAloD0MIvMlv0Skuk8CUhpRSlGgVTS0BaBZHQJMdSSNfgJl1fZQoaAZoCWgPQwjfNehLX+CdwJSGlFKUaBVL7WgWR0CTJjhl18sudX2UKGgGaAloD0MIP1bw2xBVhMCUhpRSlGgVTS0BaBZHQJMn8qaw2VF1fZQoaAZoCWgPQwj7k/jcSZuTwJSGlFKUaBVNLQFoFkdAkyhbGFSKnHV9lChoBmgJaA9DCLH34osm45LAlIaUUpRoFU0tAWgWR0CTKZHLA57xdX2UKGgGaAloD0MIo1nZPtT8kcCUhpRSlGgVTS0BaBZHQJM1T3ztkWh1fZQoaAZoCWgPQwh5AmGnKKaRwJSGlFKUaBVNLQFoFkdAkzcHeWOZLXV9lChoBmgJaA9DCHnKarr+o4zAlIaUUpRoFU0tAWgWR0CTN3FMIu5CdX2UKGgGaAloD0MIVrjlI2k4kcCUhpRSlGgVTS0BaBZHQJM4pwQ176Z1fZQoaAZoCWgPQwiwVu2akByewJSGlFKUaBVL+mgWR0CTQt1SflIVdX2UKGgGaAloD0MIkdEBSWhqkMCUhpRSlGgVTS0BaBZHQJNsB6IFeOZ1fZQoaAZoCWgPQwjZl2w82EuQwJSGlFKUaBVNLQFoFkdAk2w7mp2lmHV9lChoBmgJaA9DCPQXesQ4RJLAlIaUUpRoFU0tAWgWR0CTbXAyEcsEdX2UKGgGaAloD0MIjIaMR7mLlcCUhpRSlGgVTS0BaBZHQJN3WpAD7qJ1fZQoaAZoCWgPQwgmxjL9UqSAwJSGlFKUaBVNLQFoFkdAk3sD8HfMwHV9lChoBmgJaA9DCKwfm+SndoXAlIaUUpRoFU0tAWgWR0CTe1AS39aVdX2UKGgGaAloD0MIogxVMVUpkMCUhpRSlGgVTS0BaBZHQJN8PgXMyJt1fZQoaAZoCWgPQwgqV3iX6wicwJSGlFKUaBVL6mgWR0CTgZf0VafSdX2UKGgGaAloD0MIbECEuLL5jsCUhpRSlGgVTS0BaBZHQJOI1s9B8hN1fZQoaAZoCWgPQwhm2v6VteKNwJSGlFKUaBVNLQFoFkdAk4k5XdTHbXV9lChoBmgJaA9DCOif4GLFuJHAlIaUUpRoFU0tAWgWR0CTimQJXyRTdX2UKGgGaAloD0MIMZi/QsZJjsCUhpRSlGgVTS0BaBZHQJOQvHn2ZiN1fZQoaAZoCWgPQwh9dVWgBn6SwJSGlFKUaBVNLQFoFkdAk5hgSamXPnV9lChoBmgJaA9DCNzUQPOJl5DAlIaUUpRoFU0tAWgWR0CTmM8E3bVSdX2UKGgGaAloD0MIbAa4INsPjMCUhpRSlGgVTS0BaBZHQJOaF/LDAJt1fZQoaAZoCWgPQwhpVrYPyX6RwJSGlFKUaBVNLQFoFkdAk6E0RJ2+wnV9lChoBmgJaA9DCHY1ecpay5PAlIaUUpRoFU0tAWgWR0CTqg4GD+R6dX2UKGgGaAloD0MIgjgPJ8BikcCUhpRSlGgVTS0BaBZHQJOqYtjCpFV1fZQoaAZoCWgPQwgNjLysSTWNwJSGlFKUaBVNLQFoFkdAk6u9r433pXV9lChoBmgJaA9DCGWoiqnUUZDAlIaUUpRoFU0tAWgWR0CTsfofSx7idX2UKGgGaAloD0MI46lHGpyyj8CUhpRSlGgVTS0BaBZHQJO6BiTdLxt1fZQoaAZoCWgPQwgxs89jVLiUwJSGlFKUaBVNLQFoFkdAk7psRYigTXV9lChoBmgJaA9DCN9wH7nFiJDAlIaUUpRoFU0tAWgWR0CTu7YywfQsdX2UKGgGaAloD0MIYAMixDWZk8CUhpRSlGgVTS0BaBZHQJPCNx//ech1fZQoaAZoCWgPQwjjqrLv2q2UwJSGlFKUaBVNLQFoFkdAk8sIQrc0tXV9lChoBmgJaA9DCPLOoQxFuZLAlIaUUpRoFU0tAWgWR0CTy37IDHOsdX2UKGgGaAloD0MIGmmpvB35ksCUhpRSlGgVTS0BaBZHQJPNITwlSjx1fZQoaAZoCWgPQwiBs5QshwuOwJSGlFKUaBVNLQFoFkdAk9JSfcvdunV9lChoBmgJaA9DCCP1nspZS5PAlIaUUpRoFU0tAWgWR0CT+8225QP7dX2UKGgGaAloD0MIpG/SNEiVkcCUhpRSlGgVTS0BaBZHQJP8GHgxagV1fZQoaAZoCWgPQwilEp7Q62OKwJSGlFKUaBVNLQFoFkdAk/z4fbKzRnV9lChoBmgJaA9DCGU3M/oRB4zAlIaUUpRoFU0tAWgWR0CUAnRtgrpadX2UKGgGaAloD0MIPfGcLfDMm8CUhpRSlGgVS/ZoFkdAlAbmOyVv/HV9lChoBmgJaA9DCB5OYDpNXZDAlIaUUpRoFU0tAWgWR0CUCITV2A5JdX2UKGgGaAloD0MInu3RG+6uj8CUhpRSlGgVTS0BaBZHQJQJW0LMLWt1fZQoaAZoCWgPQwgK2uTwyUeLwJSGlFKUaBVNLQFoFkdAlA3ElzEJjXV9lChoBmgJaA9DCNKrAUoz55DAlIaUUpRoFU0tAWgWR0CUE0nWJ79idX2UKGgGaAloD0MItTS3QniyjcCUhpRSlGgVTS0BaBZHQJQV5SBK+SN1fZQoaAZoCWgPQwjyW3SylDySwJSGlFKUaBVNLQFoFkdAlBfGG/N7jXV9lChoBmgJaA9DCNHrT+IjMpbAlIaUUpRoFU0tAWgWR0CUHotqHoHLdX2UKGgGaAloD0MIU8vW+gI0lMCUhpRSlGgVTS0BaBZHQJQkq22G7Bh1fZQoaAZoCWgPQwhpqifzP9mTwJSGlFKUaBVNLQFoFkdAlCdUlzEJjXV9lChoBmgJaA9DCNANTdnJf5TAlIaUUpRoFU0tAWgWR0CUKN/NJOFhdX2UKGgGaAloD0MI+pgPCNTck8CUhpRSlGgVTS0BaBZHQJQvYxIre691fZQoaAZoCWgPQwibAS7I1peRwJSGlFKUaBVNLQFoFkdAlDUT7yhBaHV9lChoBmgJaA9DCFA25QoPNpbAlIaUUpRoFU0tAWgWR0CUN8ZgG8mKdX2UKGgGaAloD0MIxLXawx5ykcCUhpRSlGgVTS0BaBZHQJQ5mRyOrAB1fZQoaAZoCWgPQwjFG5lHvheTwJSGlFKUaBVNLQFoFkdAlD//kvK2a3V9lChoBmgJaA9DCFJ95xdlopDAlIaUUpRoFU0tAWgWR0CURSvsqrimdX2UKGgGaAloD0MIPNo4Yo2skMCUhpRSlGgVTS0BaBZHQJRG6P0Zm7J1fZQoaAZoCWgPQwiny2JiI2CUwJSGlFKUaBVNLQFoFkdAlEfLgflp5HV9lChoBmgJaA9DCDlCBvL86pHAlIaUUpRoFU0tAWgWR0CUS+cW0qpcdX2UKGgGaAloD0MILJrOTnZFkMCUhpRSlGgVTS0BaBZHQJRRZuAI6bR1fZQoaAZoCWgPQwj6sx8pUrScwJSGlFKUaBVL/WgWR0CUUz0gr6LwdX2UKGgGaAloD0MIZAPpYkMRlMCUhpRSlGgVTS0BaBZHQJRUPcFhXsB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 370, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2eddd4fb095654348c8a70f9582f9b383953249f3c1c11c0f8b249907134931
|
3 |
+
size 1255693
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -2104.516794509888, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T13:36:35.118397"}
|