culteejen commited on
Commit
002fec0
·
1 Parent(s): 4e350af

Upload model to Hugging Face

Browse files
BC-from-behavior-cloning-fast-dist-reward.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02e1e11099fca361dee4de7a3bbea8269514b5a1856af0f9365e29510596300f
3
+ size 44014
BC-from-behavior-cloning-fast-dist-reward/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
BC-from-behavior-cloning-fast-dist-reward/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0c9c2f12d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0c9c2f1360>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0c9c2f13f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0c9c2f1480>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0c9c2f1510>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0c9c2f15a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0c9c2f1630>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0c9c2f16c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0c9c2f1750>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0c9c2f17e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0c9c2f1870>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0c9c2f1900>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f0c9c2e2340>"
21
+ },
22
+ "verbose": true,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 10
30
+ ],
31
+ "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]",
32
+ "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]",
33
+ "bounded_below": "[ True True True True True True True True True True]",
34
+ "bounded_above": "[ True True True True True True True True True True]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 4,
46
+ "num_timesteps": 106496,
47
+ "_total_timesteps": 100000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1681857709429512506,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAEpBS0OuIgzAAADIQpp/EkKuBgVCUOUhQgAAyEIAAMhCAADIQgAAyEJX7IFD46IFwAAAyEIAAMhCAADIQtd9jUIAAMhCAADIQgAAyEIAAMhC7giBQwpXc78AAMhCAADIQgAAyEIAAEhCAADIQgAAyEKa7CRCAADIQgyngUM4Hf+/AADIQgAAyEIEoUNC1AfGQgAAyEIAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.0649599999999999,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMId0gxQKIpF8CUhpRSlIwBbJRLNIwBdJRHQHY5f0mMOwx1fZQoaAZoCWgPQwjOGyeFeY8PQJSGlFKUaBVLMGgWR0B2OgOCoS+QdX2UKGgGaAloD0MI48XCEDkFIkCUhpRSlGgVSy1oFkdAdkHs9jgAInV9lChoBmgJaA9DCBFV+DO8cSpAlIaUUpRoFUsyaBZHQHZDd4Z/CqJ1fZQoaAZoCWgPQwjQYimSrxQXwJSGlFKUaBVLN2gWR0B2Q6WWyC4CdX2UKGgGaAloD0MIn5PeN76CNMCUhpRSlGgVSzhoFkdAdkTLPldTpHV9lChoBmgJaA9DCKSqCaLuAyHAlIaUUpRoFUsqaBZHQHZKPNVzZHx1fZQoaAZoCWgPQwhNnx1wXbHqP5SGlFKUaBVLOWgWR0B2TJNBWxQjdX2UKGgGaAloD0MI3uS36GR9QsCUhpRSlGgVS0NoFkdAdkybmEGqxXV9lChoBmgJaA9DCKQ4Rx0dbynAlIaUUpRoFUswaBZHQHZMpB1LamJ1fZQoaAZoCWgPQwhIv30dOFcVQJSGlFKUaBVLLGgWR0B2VLY8Md92dX2UKGgGaAloD0MIZFqbxvYa9r+UhpRSlGgVSy1oFkdAdlTkRSP2f3V9lChoBmgJaA9DCFbYDHBBREDAlIaUUpRoFUtOaBZHQHZYztw71Zl1fZQoaAZoCWgPQwhv8fCeA782wJSGlFKUaBVLTGgWR0B2Wzxb0OEvdX2UKGgGaAloD0MI9iNFZFj1IcCUhpRSlGgVSzVoFkdAdl/tITXarXV9lChoBmgJaA9DCCE9RQ4RlxPAlIaUUpRoFUs0aBZHQHZjn5eqrBF1fZQoaAZoCWgPQwiq8j0jEYpBwJSGlFKUaBVLR2gWR0B2Y6jTKDChdX2UKGgGaAloD0MI+imOA69mEMCUhpRSlGgVSzJoFkdAdmWE384xUXV9lChoBmgJaA9DCIOluoCX2QrAlIaUUpRoFUstaBZHQHZomCI1tO51fZQoaAZoCWgPQwigxr35DeMQQJSGlFKUaBVLMGgWR0B2bbztkWhzdX2UKGgGaAloD0MI/kgRGVbxD0CUhpRSlGgVSzBoFkdAdm3S9du50HV9lChoBmgJaA9DCF/v/nivOidAlIaUUpRoFUspaBZHQHZxtdu5z5p1fZQoaAZoCWgPQwjrp/+s+THzv5SGlFKUaBVLKmgWR0B2dhgYxcmjdX2UKGgGaAloD0MI0NIVbCOeGkCUhpRSlGgVSzBoFkdAdndgpSaVlnV9lChoBmgJaA9DCE+tvroqnkrAlIaUUpRoFUthaBZHQHZ5ctbs4T91fZQoaAZoCWgPQwj6tfXTf+YpQJSGlFKUaBVLKWgWR0B2eaVGCqZMdX2UKGgGaAloD0MII0p7gy80J0CUhpRSlGgVSy1oFkdAdn9RxtHhCXV9lChoBmgJaA9DCEpdMo6RxCvAlIaUUpRoFUswaBZHQHaBPzz3AVR1fZQoaAZoCWgPQwjVWpiFdq4mQJSGlFKUaBVLK2gWR0B2gqV1Oj7AdX2UKGgGaAloD0MIJhjONczwP8CUhpRSlGgVSz9oFkdAdodWdVea8nV9lChoBmgJaA9DCN+Mmq+SdyXAlIaUUpRoFUs7aBZHQHaMgOSW7e51fZQoaAZoCWgPQwhH/8u1aEHwv5SGlFKUaBVLLmgWR0B2jNWNm16WdX2UKGgGaAloD0MInPnVHCA4IsCUhpRSlGgVSz1oFkdAdo7lqJuVHHV9lChoBmgJaA9DCPRr66f/vCjAlIaUUpRoFUtBaBZHQHaS4+KTB691fZQoaAZoCWgPQwiHwmfr4IwxwJSGlFKUaBVLM2gWR0B2lE7CBPKudX2UKGgGaAloD0MIeT4D6s1sMsCUhpRSlGgVSztoFkdAdpVAFgUlA3V9lChoBmgJaA9DCPhT46WbxDHAlIaUUpRoFUs6aBZHQHaWFijL0SR1fZQoaAZoCWgPQwiGcTeI1pYzQJSGlFKUaBVLLGgWR0B2l+pVCHARdX2UKGgGaAloD0MI+Wncm9/wH0CUhpRSlGgVSyhoFkdAdpqsKb8WK3V9lChoBmgJaA9DCCBCXDl7yzXAlIaUUpRoFUtCaBZHQHab9apxWDJ1fZQoaAZoCWgPQwgNG2X9ZlohwJSGlFKUaBVLPGgWR0B2m/k0aZQYdX2UKGgGaAloD0MICHb8FwhSGsCUhpRSlGgVSzBoFkdAdp3BE8aGYnV9lChoBmgJaA9DCMBd9utOVyNAlIaUUpRoFUspaBZHQHafmQCCBf91fZQoaAZoCWgPQwiMg0vH3Mx9wJSGlFKUaBVLI2gWR0B2oFKnNxEOdX2UKGgGaAloD0MIJNQMqaJ4DMCUhpRSlGgVSyhoFkdAdqDLPUrkKnV9lChoBmgJaA9DCL0bCwqDcvS/lIaUUpRoFUspaBZHQHajXGff4yp1fZQoaAZoCWgPQwgIlE25wssZQJSGlFKUaBVLLGgWR0B2pVqWTot+dX2UKGgGaAloD0MI2ZWWkXqPF0CUhpRSlGgVSypoFkdAdqZhisny/nV9lChoBmgJaA9DCOOpRxrc1la/lIaUUpRoFUsyaBZHQHamtBKL8791fZQoaAZoCWgPQwh9z0iERjAIQJSGlFKUaBVLLWgWR0B2qSNMoMKDdX2UKGgGaAloD0MIWkqWk1BaIECUhpRSlGgVSydoFkdAdqtETg2qDXV9lChoBmgJaA9DCF4robskbhTAlIaUUpRoFUs3aBZHQHauUgGKQ7t1fZQoaAZoCWgPQwgzGY7nM/w1wJSGlFKUaBVLOWgWR0B2r09lmOENdX2UKGgGaAloD0MIdLSqJR2lEsCUhpRSlGgVSy9oFkdAdrBzltCRfXV9lChoBmgJaA9DCGsnSkIizQHAlIaUUpRoFUsyaBZHQHaypccENfB1fZQoaAZoCWgPQwggCJChY1ciQJSGlFKUaBVLI2gWR0B2s1rdnCfpdX2UKGgGaAloD0MItrqcEhCzBECUhpRSlGgVSy1oFkdAdrUOKO1fFHV9lChoBmgJaA9DCCWvzjEgexPAlIaUUpRoFUszaBZHQHa3GOMl1KZ1fZQoaAZoCWgPQwjQ1OsWgTH0v5SGlFKUaBVLKmgWR0B2uT2GqPwNdX2UKGgGaAloD0MIR1oqb0dwL8CUhpRSlGgVSz1oFkdAdrsSsr/bTXV9lChoBmgJaA9DCCbirfNvRxZAlIaUUpRoFUsmaBZHQHa7Fh5PdmB1fZQoaAZoCWgPQwgpIy4AjaIowJSGlFKUaBVLKmgWR0B2vV5E+gUUdX2UKGgGaAloD0MIptB5jV2i2D+UhpRSlGgVSy9oFkdAdsBKW9lEqnV9lChoBmgJaA9DCNL7xteeuR1AlIaUUpRoFUslaBZHQHbAZCSidrh1fZQoaAZoCWgPQwjIef8fJ+wOQJSGlFKUaBVLJWgWR0B2wGdAgPmQdX2UKGgGaAloD0MIj/0sliIZEcCUhpRSlGgVSytoFkdAdsLLGrCFbnV9lChoBmgJaA9DCAzohTsX5hDAlIaUUpRoFUsuaBZHQHbGIH1OCXh1fZQoaAZoCWgPQwgz+WabG0sgwJSGlFKUaBVLN2gWR0B2x6YPXkHVdX2UKGgGaAloD0MIwHlx4qv1NMCUhpRSlGgVSzloFkdAdsfigkC3gHV9lChoBmgJaA9DCI82jliLJyjAlIaUUpRoFUsvaBZHQHbOeb3Gn4x1fZQoaAZoCWgPQwh8nj9tVOFFwJSGlFKUaBVLUWgWR0B2zwIu5BkadX2UKGgGaAloD0MICFVq9kBrLcCUhpRSlGgVS0doFkdAdtD/keZG8XV9lChoBmgJaA9DCIviVdY2X0TAlIaUUpRoFUtAaBZHQHbRSofjjrB1fZQoaAZoCWgPQwhvgm+aPvsBQJSGlFKUaBVLKmgWR0B21EXQ+lj3dX2UKGgGaAloD0MIE38UdeYeAcCUhpRSlGgVSypoFkdAdtRf6XSjQHV9lChoBmgJaA9DCGb1DrdDAwLAlIaUUpRoFUsuaBZHQHbWcLSeAd51fZQoaAZoCWgPQwjEJFzII7ihv5SGlFKUaBVLLmgWR0B21rlp48lpdX2UKGgGaAloD0MI5ldzgGDeG0CUhpRSlGgVSydoFkdAdtjFHavicXV9lChoBmgJaA9DCG6+Ed2zDgVAlIaUUpRoFUsqaBZHQHbY9ETg2qF1fZQoaAZoCWgPQwgQIa6cvaMWQJSGlFKUaBVLJ2gWR0B22sbHZK4AdX2UKGgGaAloD0MIVix+U1gJBsCUhpRSlGgVSzBoFkdAdtx3y7PIGXV9lChoBmgJaA9DCB8uOe6UjuG/lIaUUpRoFUsqaBZHQHbed5t3wCt1fZQoaAZoCWgPQwiojlVKz5wzQJSGlFKUaBVLKmgWR0B23qzUqhDgdX2UKGgGaAloD0MIUz4EVaN3DkCUhpRSlGgVSyloFkdAduOB8QZn+XV9lChoBmgJaA9DCNEeL6TDoz3AlIaUUpRoFUtDaBZHQHbjsgQpWmx1fZQoaAZoCWgPQwiU+NwJ9t8SQJSGlFKUaBVLK2gWR0B25AVqN6w/dX2UKGgGaAloD0MIxCedSDDhPcCUhpRSlGgVSztoFkdAduQ8ifQKKHV9lChoBmgJaA9DCMVXO4pzVCDAlIaUUpRoFUsvaBZHQHbn49HMEA51fZQoaAZoCWgPQwhkJHuEmvkhwJSGlFKUaBVLMGgWR0B26CiN83MqdX2UKGgGaAloD0MIoYSZtn85MsCUhpRSlGgVSzdoFkdAduj6oESuhnV9lChoBmgJaA9DCG+6ZYf4SzDAlIaUUpRoFUs3aBZHQHbpLJOnEVF1fZQoaAZoCWgPQwg91/fhIIkjQJSGlFKUaBVLJmgWR0B268WnCO3ldX2UKGgGaAloD0MInBcnvtpBJUCUhpRSlGgVSy5oFkdAduxFPznRs3V9lChoBmgJaA9DCDv+CwQBIhHAlIaUUpRoFUsraBZHQHbuItHxz7x1fZQoaAZoCWgPQwh2N091yMUsQJSGlFKUaBVLLmgWR0B27ksjFAE/dX2UKGgGaAloD0MIIEQy5Nh6rr+UhpRSlGgVSyxoFkdAdvNbH6uW8nV9lChoBmgJaA9DCEj7H2CtugJAlIaUUpRoFUstaBZHQHb0mSIP9UF1fZQoaAZoCWgPQwihvmVOl9U1wJSGlFKUaBVLPmgWR0B29Jvfj0cwdX2UKGgGaAloD0MI1sbYCS8FMsCUhpRSlGgVSzdoFkdAdvVxagVXWHV9lChoBmgJaA9DCA+byMwF7gnAlIaUUpRoFUspaBZHQHb3ofr8iwB1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 130,
80
+ "n_steps": 2048,
81
+ "gamma": 0.8,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
BC-from-behavior-cloning-fast-dist-reward/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66e6030576ae4f553add0145247e78478a914d543c8eb5c53355bf15b264190e
3
+ size 18973
BC-from-behavior-cloning-fast-dist-reward/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23cfeca433d7116ca245a7dfaedac1e77f47bb07718c7f4aeaa87a52aee65341
3
+ size 9295
BC-from-behavior-cloning-fast-dist-reward/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
BC-from-behavior-cloning-fast-dist-reward/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2
2
+ - Python: 3.10.9
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 2.0.0
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - RoombaAToB-from-behavior-cloning-fast-dist-reward
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: BC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: RoombaAToB-from-behavior-cloning-fast-dist-reward
16
+ type: RoombaAToB-from-behavior-cloning-fast-dist-reward
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -6.70 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **BC** Agent playing **RoombaAToB-from-behavior-cloning-fast-dist-reward**
25
+ This is a trained model of a **BC** agent playing **RoombaAToB-from-behavior-cloning-fast-dist-reward**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0c9c2f12d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0c9c2f1360>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0c9c2f13f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0c9c2f1480>", "_build": "<function ActorCriticPolicy._build at 0x7f0c9c2f1510>", "forward": "<function ActorCriticPolicy.forward at 0x7f0c9c2f15a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0c9c2f1630>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0c9c2f16c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0c9c2f1750>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0c9c2f17e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0c9c2f1870>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0c9c2f1900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0c9c2e2340>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 106496, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681857709429512506, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAEpBS0OuIgzAAADIQpp/EkKuBgVCUOUhQgAAyEIAAMhCAADIQgAAyEJX7IFD46IFwAAAyEIAAMhCAADIQtd9jUIAAMhCAADIQgAAyEIAAMhC7giBQwpXc78AAMhCAADIQgAAyEIAAEhCAADIQgAAyEKa7CRCAADIQgyngUM4Hf+/AADIQgAAyEIEoUNC1AfGQgAAyEIAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMId0gxQKIpF8CUhpRSlIwBbJRLNIwBdJRHQHY5f0mMOwx1fZQoaAZoCWgPQwjOGyeFeY8PQJSGlFKUaBVLMGgWR0B2OgOCoS+QdX2UKGgGaAloD0MI48XCEDkFIkCUhpRSlGgVSy1oFkdAdkHs9jgAInV9lChoBmgJaA9DCBFV+DO8cSpAlIaUUpRoFUsyaBZHQHZDd4Z/CqJ1fZQoaAZoCWgPQwjQYimSrxQXwJSGlFKUaBVLN2gWR0B2Q6WWyC4CdX2UKGgGaAloD0MIn5PeN76CNMCUhpRSlGgVSzhoFkdAdkTLPldTpHV9lChoBmgJaA9DCKSqCaLuAyHAlIaUUpRoFUsqaBZHQHZKPNVzZHx1fZQoaAZoCWgPQwhNnx1wXbHqP5SGlFKUaBVLOWgWR0B2TJNBWxQjdX2UKGgGaAloD0MI3uS36GR9QsCUhpRSlGgVS0NoFkdAdkybmEGqxXV9lChoBmgJaA9DCKQ4Rx0dbynAlIaUUpRoFUswaBZHQHZMpB1LamJ1fZQoaAZoCWgPQwhIv30dOFcVQJSGlFKUaBVLLGgWR0B2VLY8Md92dX2UKGgGaAloD0MIZFqbxvYa9r+UhpRSlGgVSy1oFkdAdlTkRSP2f3V9lChoBmgJaA9DCFbYDHBBREDAlIaUUpRoFUtOaBZHQHZYztw71Zl1fZQoaAZoCWgPQwhv8fCeA782wJSGlFKUaBVLTGgWR0B2Wzxb0OEvdX2UKGgGaAloD0MI9iNFZFj1IcCUhpRSlGgVSzVoFkdAdl/tITXarXV9lChoBmgJaA9DCCE9RQ4RlxPAlIaUUpRoFUs0aBZHQHZjn5eqrBF1fZQoaAZoCWgPQwiq8j0jEYpBwJSGlFKUaBVLR2gWR0B2Y6jTKDChdX2UKGgGaAloD0MI+imOA69mEMCUhpRSlGgVSzJoFkdAdmWE384xUXV9lChoBmgJaA9DCIOluoCX2QrAlIaUUpRoFUstaBZHQHZomCI1tO51fZQoaAZoCWgPQwigxr35DeMQQJSGlFKUaBVLMGgWR0B2bbztkWhzdX2UKGgGaAloD0MI/kgRGVbxD0CUhpRSlGgVSzBoFkdAdm3S9du50HV9lChoBmgJaA9DCF/v/nivOidAlIaUUpRoFUspaBZHQHZxtdu5z5p1fZQoaAZoCWgPQwjrp/+s+THzv5SGlFKUaBVLKmgWR0B2dhgYxcmjdX2UKGgGaAloD0MI0NIVbCOeGkCUhpRSlGgVSzBoFkdAdndgpSaVlnV9lChoBmgJaA9DCE+tvroqnkrAlIaUUpRoFUthaBZHQHZ5ctbs4T91fZQoaAZoCWgPQwj6tfXTf+YpQJSGlFKUaBVLKWgWR0B2eaVGCqZMdX2UKGgGaAloD0MII0p7gy80J0CUhpRSlGgVSy1oFkdAdn9RxtHhCXV9lChoBmgJaA9DCEpdMo6RxCvAlIaUUpRoFUswaBZHQHaBPzz3AVR1fZQoaAZoCWgPQwjVWpiFdq4mQJSGlFKUaBVLK2gWR0B2gqV1Oj7AdX2UKGgGaAloD0MIJhjONczwP8CUhpRSlGgVSz9oFkdAdodWdVea8nV9lChoBmgJaA9DCN+Mmq+SdyXAlIaUUpRoFUs7aBZHQHaMgOSW7e51fZQoaAZoCWgPQwhH/8u1aEHwv5SGlFKUaBVLLmgWR0B2jNWNm16WdX2UKGgGaAloD0MInPnVHCA4IsCUhpRSlGgVSz1oFkdAdo7lqJuVHHV9lChoBmgJaA9DCPRr66f/vCjAlIaUUpRoFUtBaBZHQHaS4+KTB691fZQoaAZoCWgPQwiHwmfr4IwxwJSGlFKUaBVLM2gWR0B2lE7CBPKudX2UKGgGaAloD0MIeT4D6s1sMsCUhpRSlGgVSztoFkdAdpVAFgUlA3V9lChoBmgJaA9DCPhT46WbxDHAlIaUUpRoFUs6aBZHQHaWFijL0SR1fZQoaAZoCWgPQwiGcTeI1pYzQJSGlFKUaBVLLGgWR0B2l+pVCHARdX2UKGgGaAloD0MI+Wncm9/wH0CUhpRSlGgVSyhoFkdAdpqsKb8WK3V9lChoBmgJaA9DCCBCXDl7yzXAlIaUUpRoFUtCaBZHQHab9apxWDJ1fZQoaAZoCWgPQwgNG2X9ZlohwJSGlFKUaBVLPGgWR0B2m/k0aZQYdX2UKGgGaAloD0MICHb8FwhSGsCUhpRSlGgVSzBoFkdAdp3BE8aGYnV9lChoBmgJaA9DCMBd9utOVyNAlIaUUpRoFUspaBZHQHafmQCCBf91fZQoaAZoCWgPQwiMg0vH3Mx9wJSGlFKUaBVLI2gWR0B2oFKnNxEOdX2UKGgGaAloD0MIJNQMqaJ4DMCUhpRSlGgVSyhoFkdAdqDLPUrkKnV9lChoBmgJaA9DCL0bCwqDcvS/lIaUUpRoFUspaBZHQHajXGff4yp1fZQoaAZoCWgPQwgIlE25wssZQJSGlFKUaBVLLGgWR0B2pVqWTot+dX2UKGgGaAloD0MI2ZWWkXqPF0CUhpRSlGgVSypoFkdAdqZhisny/nV9lChoBmgJaA9DCOOpRxrc1la/lIaUUpRoFUsyaBZHQHamtBKL8791fZQoaAZoCWgPQwh9z0iERjAIQJSGlFKUaBVLLWgWR0B2qSNMoMKDdX2UKGgGaAloD0MIWkqWk1BaIECUhpRSlGgVSydoFkdAdqtETg2qDXV9lChoBmgJaA9DCF4robskbhTAlIaUUpRoFUs3aBZHQHauUgGKQ7t1fZQoaAZoCWgPQwgzGY7nM/w1wJSGlFKUaBVLOWgWR0B2r09lmOENdX2UKGgGaAloD0MIdLSqJR2lEsCUhpRSlGgVSy9oFkdAdrBzltCRfXV9lChoBmgJaA9DCGsnSkIizQHAlIaUUpRoFUsyaBZHQHaypccENfB1fZQoaAZoCWgPQwggCJChY1ciQJSGlFKUaBVLI2gWR0B2s1rdnCfpdX2UKGgGaAloD0MItrqcEhCzBECUhpRSlGgVSy1oFkdAdrUOKO1fFHV9lChoBmgJaA9DCCWvzjEgexPAlIaUUpRoFUszaBZHQHa3GOMl1KZ1fZQoaAZoCWgPQwjQ1OsWgTH0v5SGlFKUaBVLKmgWR0B2uT2GqPwNdX2UKGgGaAloD0MIR1oqb0dwL8CUhpRSlGgVSz1oFkdAdrsSsr/bTXV9lChoBmgJaA9DCCbirfNvRxZAlIaUUpRoFUsmaBZHQHa7Fh5PdmB1fZQoaAZoCWgPQwgpIy4AjaIowJSGlFKUaBVLKmgWR0B2vV5E+gUUdX2UKGgGaAloD0MIptB5jV2i2D+UhpRSlGgVSy9oFkdAdsBKW9lEqnV9lChoBmgJaA9DCNL7xteeuR1AlIaUUpRoFUslaBZHQHbAZCSidrh1fZQoaAZoCWgPQwjIef8fJ+wOQJSGlFKUaBVLJWgWR0B2wGdAgPmQdX2UKGgGaAloD0MIj/0sliIZEcCUhpRSlGgVSytoFkdAdsLLGrCFbnV9lChoBmgJaA9DCAzohTsX5hDAlIaUUpRoFUsuaBZHQHbGIH1OCXh1fZQoaAZoCWgPQwgz+WabG0sgwJSGlFKUaBVLN2gWR0B2x6YPXkHVdX2UKGgGaAloD0MIwHlx4qv1NMCUhpRSlGgVSzloFkdAdsfigkC3gHV9lChoBmgJaA9DCI82jliLJyjAlIaUUpRoFUsvaBZHQHbOeb3Gn4x1fZQoaAZoCWgPQwh8nj9tVOFFwJSGlFKUaBVLUWgWR0B2zwIu5BkadX2UKGgGaAloD0MICFVq9kBrLcCUhpRSlGgVS0doFkdAdtD/keZG8XV9lChoBmgJaA9DCIviVdY2X0TAlIaUUpRoFUtAaBZHQHbRSofjjrB1fZQoaAZoCWgPQwhvgm+aPvsBQJSGlFKUaBVLKmgWR0B21EXQ+lj3dX2UKGgGaAloD0MIE38UdeYeAcCUhpRSlGgVSypoFkdAdtRf6XSjQHV9lChoBmgJaA9DCGb1DrdDAwLAlIaUUpRoFUsuaBZHQHbWcLSeAd51fZQoaAZoCWgPQwjEJFzII7ihv5SGlFKUaBVLLmgWR0B21rlp48lpdX2UKGgGaAloD0MI5ldzgGDeG0CUhpRSlGgVSydoFkdAdtjFHavicXV9lChoBmgJaA9DCG6+Ed2zDgVAlIaUUpRoFUsqaBZHQHbY9ETg2qF1fZQoaAZoCWgPQwgQIa6cvaMWQJSGlFKUaBVLJ2gWR0B22sbHZK4AdX2UKGgGaAloD0MIVix+U1gJBsCUhpRSlGgVSzBoFkdAdtx3y7PIGXV9lChoBmgJaA9DCB8uOe6UjuG/lIaUUpRoFUsqaBZHQHbed5t3wCt1fZQoaAZoCWgPQwiojlVKz5wzQJSGlFKUaBVLKmgWR0B23qzUqhDgdX2UKGgGaAloD0MIUz4EVaN3DkCUhpRSlGgVSyloFkdAduOB8QZn+XV9lChoBmgJaA9DCNEeL6TDoz3AlIaUUpRoFUtDaBZHQHbjsgQpWmx1fZQoaAZoCWgPQwiU+NwJ9t8SQJSGlFKUaBVLK2gWR0B25AVqN6w/dX2UKGgGaAloD0MIxCedSDDhPcCUhpRSlGgVSztoFkdAduQ8ifQKKHV9lChoBmgJaA9DCMVXO4pzVCDAlIaUUpRoFUsvaBZHQHbn49HMEA51fZQoaAZoCWgPQwhkJHuEmvkhwJSGlFKUaBVLMGgWR0B26CiN83MqdX2UKGgGaAloD0MIoYSZtn85MsCUhpRSlGgVSzdoFkdAduj6oESuhnV9lChoBmgJaA9DCG+6ZYf4SzDAlIaUUpRoFUs3aBZHQHbpLJOnEVF1fZQoaAZoCWgPQwg91/fhIIkjQJSGlFKUaBVLJmgWR0B268WnCO3ldX2UKGgGaAloD0MInBcnvtpBJUCUhpRSlGgVSy5oFkdAduxFPznRs3V9lChoBmgJaA9DCDv+CwQBIhHAlIaUUpRoFUsraBZHQHbuItHxz7x1fZQoaAZoCWgPQwh2N091yMUsQJSGlFKUaBVLLmgWR0B27ksjFAE/dX2UKGgGaAloD0MIIEQy5Nh6rr+UhpRSlGgVSyxoFkdAdvNbH6uW8nV9lChoBmgJaA9DCEj7H2CtugJAlIaUUpRoFUstaBZHQHb0mSIP9UF1fZQoaAZoCWgPQwihvmVOl9U1wJSGlFKUaBVLPmgWR0B29Jvfj0cwdX2UKGgGaAloD0MI1sbYCS8FMsCUhpRSlGgVSzdoFkdAdvVxagVXWHV9lChoBmgJaA9DCA+byMwF7gnAlIaUUpRoFUspaBZHQHb3ofr8iwB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 130, "n_steps": 2048, "gamma": 0.8, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (574 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -6.7010443826266295, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-18T15:48:05.637361"}