Update evaluation script
Browse files
README.md
CHANGED
@@ -54,15 +54,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
54 |
# Preprocessing the datasets.
|
55 |
# We need to read the aduio files as arrays
|
56 |
def speech_file_to_array_fn(batch):
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
|
61 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
62 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
63 |
|
64 |
with torch.no_grad():
|
65 |
-
|
66 |
|
67 |
predicted_ids = torch.argmax(logits, dim=-1)
|
68 |
|
@@ -90,7 +90,7 @@ import argparse
|
|
90 |
lang_id = "zh-HK"
|
91 |
model_id = "ctl/wav2vec2-large-xlsr-cantonese"
|
92 |
|
93 |
-
chars_to_ignore_regex = '[
|
94 |
|
95 |
test_dataset = load_dataset("common_voice", f"{lang_id}", split="test")
|
96 |
cer = load_metric("./cer")
|
@@ -135,7 +135,7 @@ Adapting code from [wer](https://github.com/huggingface/datasets/blob/master/met
|
|
135 |
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
136 |
class CER(datasets.Metric):
|
137 |
def _info(self):
|
138 |
-
|
139 |
|
140 |
def _compute(self, predictions, references):
|
141 |
preds = [char for seq in predictions for char in list(seq)]
|
@@ -144,7 +144,7 @@ class CER(datasets.Metric):
|
|
144 |
```
|
145 |
|
146 |
|
147 |
-
**Test Result**: 15.
|
148 |
|
149 |
|
150 |
## Training
|
|
|
54 |
# Preprocessing the datasets.
|
55 |
# We need to read the aduio files as arrays
|
56 |
def speech_file_to_array_fn(batch):
|
57 |
+
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
58 |
+
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
59 |
+
\treturn batch
|
60 |
|
61 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
62 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
63 |
|
64 |
with torch.no_grad():
|
65 |
+
\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
66 |
|
67 |
predicted_ids = torch.argmax(logits, dim=-1)
|
68 |
|
|
|
90 |
lang_id = "zh-HK"
|
91 |
model_id = "ctl/wav2vec2-large-xlsr-cantonese"
|
92 |
|
93 |
+
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:"\\“\\%\\‘\\”\\�\\.\\⋯\\!\\-\\:\\–\\。\\》\\,\\)\\,\\?\\;\\~\\~\\…\\︰\\,\\(\\」\\‧\\《\\﹔\\、\\—\\/\\,\\「\\﹖\\·\\']'
|
94 |
|
95 |
test_dataset = load_dataset("common_voice", f"{lang_id}", split="test")
|
96 |
cer = load_metric("./cer")
|
|
|
135 |
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
136 |
class CER(datasets.Metric):
|
137 |
def _info(self):
|
138 |
+
\t...
|
139 |
|
140 |
def _compute(self, predictions, references):
|
141 |
preds = [char for seq in predictions for char in list(seq)]
|
|
|
144 |
```
|
145 |
|
146 |
|
147 |
+
**Test Result**: 15.51 %
|
148 |
|
149 |
|
150 |
## Training
|