ctl's picture
upadte CER
b353b5b
raw
history blame
4.76 kB
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import cer
cer = cer.CER()
class TestCER(unittest.TestCase):
def test_cer_case_senstive(self):
refs = ['White House']
preds = ['white house']
# S = 2, D = 0, I = 0, N = 9, CER = 2 / 11
char_error_rate = cer.compute(predictions=preds, references=refs)
self.assertTrue(abs(char_error_rate - 0.1818181818) < 1e-6)
def test_cer_whitespace(self):
refs = ['were wolf']
preds = ['werewolf']
# S = 0, D = 0, I = 1, N = 9, CER = 1 / 9
char_error_rate = cer.compute(predictions=preds, references=refs)
self.assertTrue(abs(char_error_rate - 0.1111111) < 1e-6)
# consecutive whitespaces case 0
refs = ['werewolf']
preds = ['weae wolf']
# S = 1, D = 1, I = 0, N = 8, CER = 0.25
char_error_rate = cer.compute(predictions=preds, references=refs)
self.assertTrue(abs(char_error_rate - 0.25) < 1e-6)
# consecutive whitespaces case 1
refs = ['were wolf']
preds = ['were wolf']
# S = 0, D = 0, I = 0, N = 9, CER = 0
char_error_rate = cer.compute(predictions=preds, references=refs)
self.assertTrue(abs(char_error_rate - 0.0) < 1e-6)
# consecutive whitespaces case 2
refs = ['were wolf']
preds = ['were wolf']
# S = 0, D = 0, I = 0, N = 9, CER = 0
char_error_rate = cer.compute(predictions=preds, references=refs)
self.assertTrue(abs(char_error_rate - 0.0) < 1e-6)
def test_cer_sub(self):
refs = ['werewolf']
preds = ['weaewolf']
# S = 1, D = 0, I = 0, N = 8, CER = 0.125
char_error_rate = cer.compute(predictions=preds, references=refs)
self.assertTrue(abs(char_error_rate - 0.125) < 1e-6)
def test_cer_del(self):
refs = ['werewolf']
preds = ['wereawolf']
# S = 0, D = 1, I = 0, N = 8, CER = 0.125
char_error_rate = cer.compute(predictions=preds, references=refs)
self.assertTrue(abs(char_error_rate - 0.125) < 1e-6)
def test_cer_insert(self):
refs = ['werewolf']
preds = ['wereolf']
# S = 0, D = 0, I = 1, N = 8, CER = 0.125
char_error_rate = cer.compute(predictions=preds, references=refs)
self.assertTrue(abs(char_error_rate - 0.125) < 1e-6)
def test_cer_equal(self):
refs = ['werewolf']
char_error_rate = cer.compute(predictions=refs, references=refs)
self.assertEqual(char_error_rate, 0.0)
def test_cer_list_of_seqs(self):
refs = ['werewolf', 'I am your father']
char_error_rate = cer.compute(predictions=refs, references=refs)
self.assertEqual(char_error_rate, 0.0)
refs = ['werewolf', 'I am your father', 'doge']
preds = ['werxwolf', 'I am your father', 'doge']
# S = 1, D = 0, I = 0, N = 28, CER = 1 / 28
char_error_rate = cer.compute(predictions=preds, references=refs)
self.assertTrue(abs(char_error_rate - 0.03571428) < 1e-6)
def test_cer_unicode(self):
refs = [u'我能吞下玻璃而不伤身体']
preds = [u' 能吞虾玻璃而 不霜身体啦']
# S = 3, D = 2, I = 0, N = 11
# CER = 5 / 11
char_error_rate = cer.compute(predictions=preds, references=refs)
self.assertTrue(abs(char_error_rate - 0.4545454545) < 1e-6)
refs = [u'我能吞', u'下玻璃而不伤身体']
preds = [u'我 能 吞 下 玻 璃', u'而不伤身体']
# S = 0, D = 5, I = 0, N = 11
# CER = 5 / 11
char_error_rate = cer.compute(predictions=preds, references=refs)
self.assertTrue(abs(char_error_rate - 0.454545454545) < 1e-6)
refs = [u'我能吞下玻璃而不伤身体']
char_error_rate = cer.compute(predictions=refs, references=refs)
self.assertFalse(char_error_rate, 0.0)
def test_cer_empty(self):
refs = ''
preds = 'Hypothesis'
with self.assertRaises(ValueError):
char_error_rate = cer.compute(predictions=preds, references=refs)
if __name__ == '__main__':
unittest.main()