|
|
|
|
|
|
|
""" |
|
We use |
|
https://hf-mirror.com/yuekai/model_repo_sense_voice_small/blob/main/export_onnx.py |
|
as a reference while writing this file. |
|
|
|
Thanks to https://github.com/yuekaizhang for making the file public. |
|
""" |
|
|
|
import os |
|
from typing import Any, Dict, Tuple |
|
|
|
import onnx |
|
import torch |
|
from model import SenseVoiceSmall |
|
from onnxruntime.quantization import QuantType, quantize_dynamic |
|
|
|
|
|
def add_meta_data(filename: str, meta_data: Dict[str, Any]): |
|
"""Add meta data to an ONNX model. It is changed in-place. |
|
|
|
Args: |
|
filename: |
|
Filename of the ONNX model to be changed. |
|
meta_data: |
|
Key-value pairs. |
|
""" |
|
model = onnx.load(filename) |
|
while len(model.metadata_props): |
|
model.metadata_props.pop() |
|
|
|
for key, value in meta_data.items(): |
|
meta = model.metadata_props.add() |
|
meta.key = key |
|
meta.value = str(value) |
|
|
|
onnx.save(model, filename) |
|
|
|
|
|
def modified_forward( |
|
self, |
|
x: torch.Tensor, |
|
x_length: torch.Tensor, |
|
language: torch.Tensor, |
|
text_norm: torch.Tensor, |
|
): |
|
""" |
|
Args: |
|
x: |
|
A 3-D tensor of shape (N, T, C) with dtype torch.float32 |
|
x_length: |
|
A 1-D tensor of shape (N,) with dtype torch.int32 |
|
language: |
|
A 1-D tensor of shape (N,) with dtype torch.int32 |
|
See also https://github.com/FunAudioLLM/SenseVoice/blob/a80e676461b24419cf1130a33d4dd2f04053e5cc/model.py#L640 |
|
text_norm: |
|
A 1-D tensor of shape (N,) with dtype torch.int32 |
|
See also https://github.com/FunAudioLLM/SenseVoice/blob/a80e676461b24419cf1130a33d4dd2f04053e5cc/model.py#L642 |
|
""" |
|
language_query = self.embed(language).unsqueeze(1) |
|
text_norm_query = self.embed(text_norm).unsqueeze(1) |
|
|
|
event_emo_query = self.embed(torch.LongTensor([[1, 2]])).repeat(x.size(0), 1, 1) |
|
|
|
x = torch.cat((language_query, event_emo_query, text_norm_query, x), dim=1) |
|
x_length += 4 |
|
|
|
encoder_out, encoder_out_lens = self.encoder(x, x_length) |
|
if isinstance(encoder_out, tuple): |
|
encoder_out = encoder_out[0] |
|
|
|
ctc_logits = self.ctc.ctc_lo(encoder_out) |
|
|
|
return ctc_logits |
|
|
|
|
|
def load_cmvn(filename) -> Tuple[str, str]: |
|
neg_mean = None |
|
inv_stddev = None |
|
|
|
with open(filename) as f: |
|
for line in f: |
|
if not line.startswith("<LearnRateCoef>"): |
|
continue |
|
t = line.split()[3:-1] |
|
|
|
if neg_mean is None: |
|
neg_mean = ",".join(t) |
|
else: |
|
inv_stddev = ",".join(t) |
|
|
|
return neg_mean, inv_stddev |
|
|
|
|
|
def generate_tokens(params): |
|
sp = params["tokenizer"].sp |
|
with open("tokens.txt", "w", encoding="utf-8") as f: |
|
for i in range(sp.vocab_size()): |
|
f.write(f"{sp.id_to_piece(i)} {i}\n") |
|
|
|
os.system("head tokens.txt; tail -n200 tokens.txt") |
|
|
|
|
|
def display_params(params): |
|
print("----------params----------") |
|
print(params) |
|
|
|
print("----------frontend_conf----------") |
|
print(params["frontend_conf"]) |
|
|
|
os.system(f"cat {params['frontend_conf']['cmvn_file']}") |
|
|
|
print("----------config----------") |
|
print(params["config"]) |
|
|
|
os.system(f"cat {params['config']}") |
|
|
|
|
|
def main(): |
|
model, params = SenseVoiceSmall.from_pretrained(model="iic/SenseVoiceSmall") |
|
display_params(params) |
|
|
|
generate_tokens(params) |
|
|
|
model.__class__.forward = modified_forward |
|
|
|
x = torch.randn(2, 100, 560, dtype=torch.float32) |
|
x_length = torch.tensor([80, 100], dtype=torch.int32) |
|
language = torch.tensor([0, 3], dtype=torch.int32) |
|
text_norm = torch.tensor([14, 15], dtype=torch.int32) |
|
|
|
opset_version = 13 |
|
filename = "model.onnx" |
|
torch.onnx.export( |
|
model, |
|
(x, x_length, language, text_norm), |
|
filename, |
|
opset_version=opset_version, |
|
input_names=["x", "x_length", "language", "text_norm"], |
|
output_names=["logits"], |
|
dynamic_axes={ |
|
"x": {0: "N", 1: "T"}, |
|
"x_length": {0: "N"}, |
|
"language": {0: "N"}, |
|
"text_norm": {0: "N"}, |
|
"logits": {0: "N", 1: "T"}, |
|
}, |
|
) |
|
|
|
lfr_window_size = params["frontend_conf"]["lfr_m"] |
|
lfr_window_shift = params["frontend_conf"]["lfr_n"] |
|
|
|
neg_mean, inv_stddev = load_cmvn(params["frontend_conf"]["cmvn_file"]) |
|
vocab_size = params["tokenizer"].sp.vocab_size() |
|
|
|
meta_data = { |
|
"lfr_window_size": lfr_window_size, |
|
"lfr_window_shift": lfr_window_shift, |
|
"normalize_samples": 0, |
|
"neg_mean": neg_mean, |
|
"inv_stddev": inv_stddev, |
|
"model_type": "sense_voice_ctc", |
|
|
|
|
|
"version": "2", |
|
"model_author": "iic", |
|
"maintainer": "k2-fsa", |
|
"vocab_size": vocab_size, |
|
"comment": "iic/SenseVoiceSmall", |
|
"lang_auto": model.lid_dict["auto"], |
|
"lang_zh": model.lid_dict["zh"], |
|
"lang_en": model.lid_dict["en"], |
|
"lang_yue": model.lid_dict["yue"], |
|
"lang_ja": model.lid_dict["ja"], |
|
"lang_ko": model.lid_dict["ko"], |
|
"lang_nospeech": model.lid_dict["nospeech"], |
|
"with_itn": model.textnorm_dict["withitn"], |
|
"without_itn": model.textnorm_dict["woitn"], |
|
"url": "https://huggingface.co/FunAudioLLM/SenseVoiceSmall", |
|
} |
|
add_meta_data(filename=filename, meta_data=meta_data) |
|
|
|
filename_int8 = "model.int8.onnx" |
|
quantize_dynamic( |
|
model_input=filename, |
|
model_output=filename_int8, |
|
op_types_to_quantize=["MatMul"], |
|
|
|
|
|
|
|
weight_type=QuantType.QUInt8, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
torch.manual_seed(20240717) |
|
main() |
|
|