csukuangfj's picture
add models
6a65851
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
"""
We use
https://hf-mirror.com/yuekai/model_repo_sense_voice_small/blob/main/export_onnx.py
as a reference while writing this file.
Thanks to https://github.com/yuekaizhang for making the file public.
"""
import os
from typing import Any, Dict, Tuple
import onnx
import torch
from model import SenseVoiceSmall
from onnxruntime.quantization import QuantType, quantize_dynamic
def add_meta_data(filename: str, meta_data: Dict[str, Any]):
"""Add meta data to an ONNX model. It is changed in-place.
Args:
filename:
Filename of the ONNX model to be changed.
meta_data:
Key-value pairs.
"""
model = onnx.load(filename)
while len(model.metadata_props):
model.metadata_props.pop()
for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = str(value)
onnx.save(model, filename)
def modified_forward(
self,
x: torch.Tensor,
x_length: torch.Tensor,
language: torch.Tensor,
text_norm: torch.Tensor,
):
"""
Args:
x:
A 3-D tensor of shape (N, T, C) with dtype torch.float32
x_length:
A 1-D tensor of shape (N,) with dtype torch.int32
language:
A 1-D tensor of shape (N,) with dtype torch.int32
See also https://github.com/FunAudioLLM/SenseVoice/blob/a80e676461b24419cf1130a33d4dd2f04053e5cc/model.py#L640
text_norm:
A 1-D tensor of shape (N,) with dtype torch.int32
See also https://github.com/FunAudioLLM/SenseVoice/blob/a80e676461b24419cf1130a33d4dd2f04053e5cc/model.py#L642
"""
language_query = self.embed(language).unsqueeze(1)
text_norm_query = self.embed(text_norm).unsqueeze(1)
event_emo_query = self.embed(torch.LongTensor([[1, 2]])).repeat(x.size(0), 1, 1)
x = torch.cat((language_query, event_emo_query, text_norm_query, x), dim=1)
x_length += 4
encoder_out, encoder_out_lens = self.encoder(x, x_length)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
ctc_logits = self.ctc.ctc_lo(encoder_out)
return ctc_logits
def load_cmvn(filename) -> Tuple[str, str]:
neg_mean = None
inv_stddev = None
with open(filename) as f:
for line in f:
if not line.startswith("<LearnRateCoef>"):
continue
t = line.split()[3:-1]
if neg_mean is None:
neg_mean = ",".join(t)
else:
inv_stddev = ",".join(t)
return neg_mean, inv_stddev
def generate_tokens(params):
sp = params["tokenizer"].sp
with open("tokens.txt", "w", encoding="utf-8") as f:
for i in range(sp.vocab_size()):
f.write(f"{sp.id_to_piece(i)} {i}\n")
os.system("head tokens.txt; tail -n200 tokens.txt")
def display_params(params):
print("----------params----------")
print(params)
print("----------frontend_conf----------")
print(params["frontend_conf"])
os.system(f"cat {params['frontend_conf']['cmvn_file']}")
print("----------config----------")
print(params["config"])
os.system(f"cat {params['config']}")
def main():
model, params = SenseVoiceSmall.from_pretrained(model="iic/SenseVoiceSmall")
display_params(params)
generate_tokens(params)
model.__class__.forward = modified_forward
x = torch.randn(2, 100, 560, dtype=torch.float32)
x_length = torch.tensor([80, 100], dtype=torch.int32)
language = torch.tensor([0, 3], dtype=torch.int32)
text_norm = torch.tensor([14, 15], dtype=torch.int32)
opset_version = 13
filename = "model.onnx"
torch.onnx.export(
model,
(x, x_length, language, text_norm),
filename,
opset_version=opset_version,
input_names=["x", "x_length", "language", "text_norm"],
output_names=["logits"],
dynamic_axes={
"x": {0: "N", 1: "T"},
"x_length": {0: "N"},
"language": {0: "N"},
"text_norm": {0: "N"},
"logits": {0: "N", 1: "T"},
},
)
lfr_window_size = params["frontend_conf"]["lfr_m"]
lfr_window_shift = params["frontend_conf"]["lfr_n"]
neg_mean, inv_stddev = load_cmvn(params["frontend_conf"]["cmvn_file"])
vocab_size = params["tokenizer"].sp.vocab_size()
meta_data = {
"lfr_window_size": lfr_window_size,
"lfr_window_shift": lfr_window_shift,
"normalize_samples": 0, # input should be in the range [-32768, 32767]
"neg_mean": neg_mean,
"inv_stddev": inv_stddev,
"model_type": "sense_voice_ctc",
# version 1: Use QInt8
# version 2: Use QUInt8
"version": "2",
"model_author": "iic",
"maintainer": "k2-fsa",
"vocab_size": vocab_size,
"comment": "iic/SenseVoiceSmall",
"lang_auto": model.lid_dict["auto"],
"lang_zh": model.lid_dict["zh"],
"lang_en": model.lid_dict["en"],
"lang_yue": model.lid_dict["yue"], # cantonese
"lang_ja": model.lid_dict["ja"],
"lang_ko": model.lid_dict["ko"],
"lang_nospeech": model.lid_dict["nospeech"],
"with_itn": model.textnorm_dict["withitn"],
"without_itn": model.textnorm_dict["woitn"],
"url": "https://huggingface.co/FunAudioLLM/SenseVoiceSmall",
}
add_meta_data(filename=filename, meta_data=meta_data)
filename_int8 = "model.int8.onnx"
quantize_dynamic(
model_input=filename,
model_output=filename_int8,
op_types_to_quantize=["MatMul"],
# Note that we have to use QUInt8 here.
#
# When QInt8 is used, C++ onnxruntime produces incorrect results
weight_type=QuantType.QUInt8,
)
if __name__ == "__main__":
torch.manual_seed(20240717)
main()