csuhan's picture
Upload folder using huggingface_hub
b0c0df0 verified
from typing import List, Optional, Tuple, Union
import torch
from accelerate import Accelerator, DistributedType
from loguru import logger as eval_logger
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoProcessor
from lmms_eval import utils
from lmms_eval.api.instance import Instance
from lmms_eval.api.model import lmms
from lmms_eval.api.registry import register_model
@register_model("phi3v")
class Phi3v(lmms):
"""
This class implements inference for the microsoft/Phi-3-vision-128k-instruct model.
To learn more about this model please visit the following links:
1. https://huggingface.co/microsoft/Phi-3-vision-128k-instruct
2. https://azure.microsoft.com/en-us/blog/new-models-added-to-the-phi-3-family-available-on-microsoft-azure/
3. https://github.com/microsoft/Phi-3CookBook
NOTE: This class was adapted from quen_vl.py and llava_hf.py.
Example:
accelerate launch --num_processes=4 -m lmms_eval --model phi3v --tasks mmmu_val \
--batch_size 1 --log_samples --log_samples_suffix phi3v_mmmu --output_path ./logs/
"""
def __init__(
self,
model_id_name: str = "microsoft/Phi-3-vision-128k-instruct",
device: str = "cuda",
dtype: Optional[Union[str, torch.dtype]] = "auto",
batch_size: int = 1,
trust_remote_code: Optional[bool] = True,
use_cache: bool = True,
**kwargs,
) -> None:
super().__init__()
# Do not use kwargs for now
assert kwargs == {}, f"Unexpected kwargs: {kwargs}"
# Setup accelerator.
accelerator = Accelerator()
if accelerator.num_processes > 1:
self._device = torch.device(f"cuda:{accelerator.local_process_index}")
else:
self._device = device
# Load model.
self._model = AutoModelForCausalLM.from_pretrained(model_id_name, device_map=device, trust_remote_code=trust_remote_code, torch_dtype=dtype)
self._processor = AutoProcessor.from_pretrained(model_id_name, trust_remote_code=trust_remote_code)
self._processor.tokenizer.padding_side = "left"
self._tokenizer = self._processor.tokenizer
self._config = self._model.config
self.batch_size_per_gpu = int(batch_size)
assert self.batch_size_per_gpu == 1, "batch_size_per_gpu > 1 is not supported for now."
self.use_cache = use_cache
if accelerator.num_processes > 1:
distributed_type_list = [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED]
assert accelerator.distributed_type in distributed_type_list, "Unsupported distributed type provided. Only DDP and FSDP are supported."
if accelerator.distributed_type == DistributedType.FSDP:
self._model = accelerator.prepare(self.model)
else:
self._model = accelerator.prepare_model(self.model, evaluation_mode=True)
self.accelerator = accelerator
if self.accelerator.is_local_main_process:
eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism")
self._rank = self.accelerator.local_process_index
self._world_size = self.accelerator.num_processes
else:
eval_logger.info(f"Using single device: {self._device}")
self.model.to(self._device)
self._rank = 0
self._world_size = 1
@property
def config(self):
# return the associated transformers.AutoConfig for the given pretrained model.
return self._config
@property
def tokenizer(self):
return self._tokenizer
@property
def model(self):
# returns the model, unwrapping it if using Accelerate
if hasattr(self, "accelerator"):
return self.accelerator.unwrap_model(self._model)
else:
return self._model
@property
def eot_token_id(self):
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
return self.tokenizer.eos_token_id
@property
def max_length(self):
return self._max_length
@property
def batch_size(self):
return self.batch_size_per_gpu
@property
def device(self):
return self._device
@property
def rank(self):
return self._rank
@property
def world_size(self):
return self._world_size
def flatten(self, input):
new_list = []
for i in input:
for j in i:
new_list.append(j)
return new_list
def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
raise NotImplementedError("Not implemented for Phi3v.")
def generate_until(self, requests: List[Instance]) -> List[str]:
res = []
def _collate(x):
# the negative sign on len(toks) sorts descending - this has a few advantages:
# - time estimates will always be over not underestimates, which is more useful for planning
# - to know the size of a batch when going through the list, you know the first one is always the batch
# padded context length. this is useful to simplify the batching logic and more importantly to make
# automatic adaptive batches much much easier to implement
# - any OOMs will happen right away rather than near the end
toks = self.tokenizer.encode(x[0])
return -len(toks), x[0]
pbar = tqdm(total=len(requests), disable=(self.rank != 0), desc="Model Responding")
# we group requests by their generation_kwargs,
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
# in the same batch.
re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True)
chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None)
for chunk in chunks:
contexts, all_gen_kwargs, doc_to_visual, doc_id, task, split = zip(*chunk)
task = task[0]
split = split[0]
visuals = [doc_to_visual[0](self.task_dict[task][split][ids]) for ids in doc_id]
visuals = self.flatten(visuals)
# We assume all gen kwargs in the batch are the same
# this is safe to assume because the `grouper` object ensures it.
gen_kwargs = all_gen_kwargs[0]
# Set default values for until and max_new_tokens
until = [self.tokenizer.decode(self.eot_token_id)]
# Update values from gen_kwargs if present
if "until" in gen_kwargs:
until = gen_kwargs.pop("until")
if isinstance(until, str):
until = [until]
elif not isinstance(until, list):
raise ValueError(f"Expected `gen_kwargs['until']` to be of type Union[str,list] but got {type(until)}")
if isinstance(contexts, tuple):
contexts = list(contexts)
for i in range(len(contexts)):
if "<image>" in contexts[i]:
query = "" + contexts[i]
img_placeholder_count = 1
while "<image>" in query:
query = query.replace("<image>", f"<|image_{img_placeholder_count}|>", 1)
img_placeholder_count += 1
else:
query = ""
for placeholder_id in range(len(visuals)):
query += f"<|image_{placeholder_id+1}|>\n"
query += contexts[i]
messages = [{"role": "user", "content": query}]
contexts[i] = self._tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
assert len(contexts) == 1
#
context = contexts[0]
input_ids = self._processor(text=context, images=visuals, return_tensors="pt").to(self._device, self.model.dtype)
# Setting default parameters.
if "max_new_tokens" not in gen_kwargs:
gen_kwargs["max_new_tokens"] = 1024
if "temperature" not in gen_kwargs:
gen_kwargs["temperature"] = 0
if "top_p" not in gen_kwargs:
gen_kwargs["top_p"] = None
if "num_beams" not in gen_kwargs:
gen_kwargs["num_beams"] = 1
# Generate answer.
pad_token_id = self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eod_id
generate_ids = self.model.generate(
**input_ids,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=pad_token_id,
do_sample=True if gen_kwargs["temperature"] > 0 else False,
temperature=gen_kwargs["temperature"],
top_p=gen_kwargs["top_p"],
num_beams=gen_kwargs["num_beams"],
max_new_tokens=gen_kwargs["max_new_tokens"],
use_cache=self.use_cache,
)
generate_ids = generate_ids[:, input_ids["input_ids"].shape[1] :]
response = self._processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
res.append(response)
self.cache_hook.add_partial("generate_until", (context, gen_kwargs), response)
pbar.update(1)
# reorder this group of results back to original unsorted form
res = re_ords.get_original(res)
pbar.close()
return res
def generate_until_multi_round(self, requests) -> List[str]:
raise NotImplementedError("TODO: Implement multi-round generation")