|
|
import warnings |
|
|
|
|
|
warnings.simplefilter("ignore", category=DeprecationWarning) |
|
|
warnings.filterwarnings("ignore") |
|
|
|
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
|
|
import torch |
|
|
from accelerate import Accelerator, DistributedType |
|
|
from accelerate.state import AcceleratorState |
|
|
from loguru import logger as eval_logger |
|
|
from PIL import Image |
|
|
from tqdm import tqdm |
|
|
from transformers import ( |
|
|
AutoTokenizer, |
|
|
FuyuForCausalLM, |
|
|
FuyuImageProcessor, |
|
|
FuyuProcessor, |
|
|
) |
|
|
|
|
|
from lmms_eval import utils |
|
|
from lmms_eval.api.instance import Instance |
|
|
from lmms_eval.api.model import lmms |
|
|
from lmms_eval.api.registry import register_model |
|
|
|
|
|
|
|
|
@register_model("fuyu") |
|
|
class Fuyu(lmms): |
|
|
""" |
|
|
Fuyu Model |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
pretrained: str = "adept/fuyu-8b", |
|
|
device: Optional[str] = "cuda", |
|
|
max_new_tokens: int = 256, |
|
|
batch_size: Optional[Union[int, str]] = 1, |
|
|
**kwargs, |
|
|
) -> None: |
|
|
super().__init__() |
|
|
|
|
|
assert kwargs == {}, f"Unexpected kwargs: {kwargs}" |
|
|
|
|
|
accelerator = Accelerator() |
|
|
if accelerator.num_processes > 1: |
|
|
self._device = torch.device(f"cuda:{accelerator.local_process_index}") |
|
|
else: |
|
|
self._device = device |
|
|
|
|
|
self._model = FuyuForCausalLM.from_pretrained(pretrained, torch_dtype=torch.bfloat16, device_map=self.device) |
|
|
self.model.eval() |
|
|
self.model.tie_weights() |
|
|
self._tokenizer = AutoTokenizer.from_pretrained(pretrained) |
|
|
self._config = self.model.config |
|
|
|
|
|
self.image_processor = FuyuImageProcessor() |
|
|
self.processor = FuyuProcessor(image_processor=self.image_processor, tokenizer=self.tokenizer) |
|
|
self.max_new_tokens = max_new_tokens |
|
|
self.batch_size_per_gpu = int(batch_size) |
|
|
accelerator = Accelerator() |
|
|
if accelerator.num_processes > 1: |
|
|
assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED], "Unsupported distributed type provided. Only DDP and FSDP are supported." |
|
|
|
|
|
|
|
|
|
|
|
if accelerator.distributed_type == DistributedType.DEEPSPEED: |
|
|
kwargs = { |
|
|
"train_micro_batch_size_per_gpu": self.batch_size_per_gpu, |
|
|
"train_batch_size": self.batch_size_per_gpu * accelerator.num_processes, |
|
|
} |
|
|
AcceleratorState().deepspeed_plugin.deepspeed_config_process(must_match=True, **kwargs) |
|
|
eval_logger.info("Detected that you are using DistributedType.DEEPSPEED. Make sure you run `accelerate config` and set zero stage to 0") |
|
|
if accelerator.distributed_type == DistributedType.FSDP or accelerator.distributed_type == DistributedType.DEEPSPEED: |
|
|
self._model = accelerator.prepare(self.model) |
|
|
else: |
|
|
self._model = accelerator.prepare_model(self.model, evaluation_mode=True) |
|
|
self.accelerator = accelerator |
|
|
if self.accelerator.is_local_main_process: |
|
|
eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism") |
|
|
self._rank = self.accelerator.local_process_index |
|
|
self._world_size = self.accelerator.num_processes |
|
|
else: |
|
|
self.model.to(self._device) |
|
|
self._rank = 0 |
|
|
self._world_size = 1 |
|
|
|
|
|
"""if accelerator.num_processes > 1: |
|
|
assert accelerator.distributed_type in [ |
|
|
DistributedType.FSDP, |
|
|
DistributedType.MULTI_GPU, |
|
|
], "Unsupported distributed type provided. Only DDP and FSDP are supported." |
|
|
if accelerator.distributed_type == DistributedType.FSDP: |
|
|
self._model = accelerator.prepare(self.model) |
|
|
else: |
|
|
self._model = accelerator.prepare_model(self.model, evaluation_mode=True) |
|
|
self.accelerator = accelerator |
|
|
if self.accelerator.is_local_main_process: |
|
|
eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism") |
|
|
self._rank = self.accelerator.local_process_index |
|
|
self._world_size = self.accelerator.num_processes""" |
|
|
|
|
|
@property |
|
|
def config(self): |
|
|
|
|
|
return self._config |
|
|
|
|
|
@property |
|
|
def tokenizer(self): |
|
|
return self._tokenizer |
|
|
|
|
|
@property |
|
|
def model(self): |
|
|
|
|
|
if hasattr(self, "accelerator"): |
|
|
return self.accelerator.unwrap_model(self._model) |
|
|
else: |
|
|
return self._model |
|
|
|
|
|
@property |
|
|
def eot_token_id(self): |
|
|
|
|
|
return self.tokenizer.eos_token_id |
|
|
|
|
|
@property |
|
|
def max_length(self): |
|
|
|
|
|
return self.tokenizer.model_max_length |
|
|
|
|
|
@property |
|
|
def batch_size(self): |
|
|
return self.batch_size_per_gpu |
|
|
|
|
|
@property |
|
|
def device(self): |
|
|
return self._device |
|
|
|
|
|
@property |
|
|
def rank(self): |
|
|
return self._rank |
|
|
|
|
|
@property |
|
|
def world_size(self): |
|
|
return self._world_size |
|
|
|
|
|
def flatten(self, input, only_get_first=False): |
|
|
new_list = [] |
|
|
for i in input: |
|
|
for j in i: |
|
|
new_list.append(j) |
|
|
if only_get_first: |
|
|
break |
|
|
return new_list |
|
|
|
|
|
def generate_until(self, requests: List[Instance]) -> List[str]: |
|
|
res = [] |
|
|
|
|
|
def _collate(x): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
toks = self.tok_encode(x[0]) |
|
|
return -len(toks), x[0] |
|
|
|
|
|
re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True) |
|
|
chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None) |
|
|
num_iters = len(requests) // self.batch_size if len(requests) % self.batch_size == 0 else len(requests) // self.batch_size + 1 |
|
|
pbar = tqdm(total=num_iters, disable=(self.rank != 0), desc="Model Responding") |
|
|
|
|
|
for chunk in chunks: |
|
|
contexts, all_gen_kwargs, doc_to_visual, doc_id, task, split = zip(*chunk) |
|
|
task = task[0] |
|
|
split = split[0] |
|
|
visuals = [doc_to_visual[0](self.task_dict[task][split][ids]) for ids in doc_id] |
|
|
visuals = self.flatten(visuals, only_get_first=True) |
|
|
gen_kwargs = all_gen_kwargs[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
formatted_contexts = [f"{context}\n" for context in contexts] |
|
|
model_inputs = self.processor(text=formatted_contexts, images=visuals, device=self.device) |
|
|
for k, v in model_inputs.items(): |
|
|
model_inputs[k] = v.to(self.device, non_blocking=True) if isinstance(v, torch.Tensor) else [vv.to(self.device, non_blocking=True) for vv in v] |
|
|
|
|
|
for index in range(len(model_inputs["image_patches"])): |
|
|
model_inputs["image_patches"][index] = model_inputs["image_patches"][index].to(dtype=next(self.model.parameters()).dtype) |
|
|
|
|
|
|
|
|
gen_kwargs["image_sizes"] = [visuals[idx].size for idx in range(len(visuals))] |
|
|
if "max_new_tokens" not in gen_kwargs: |
|
|
gen_kwargs["max_new_tokens"] = 256 |
|
|
if "temperature" not in gen_kwargs: |
|
|
gen_kwargs["temperature"] = 0 |
|
|
if "top_p" not in gen_kwargs: |
|
|
gen_kwargs["top_p"] = None |
|
|
if "num_beams" not in gen_kwargs: |
|
|
gen_kwargs["num_beams"] = 1 |
|
|
|
|
|
|
|
|
|
|
|
generation_output = self.model.generate(**model_inputs, max_new_tokens=gen_kwargs["max_new_tokens"], pad_token_id=self.tokenizer.eos_token_id) |
|
|
generation_texts = self.processor.batch_decode(generation_output, skip_special_tokens=True) |
|
|
response = [gen_text.split("\x04")[1].strip(" ").strip("\n") for gen_text in generation_texts] |
|
|
res.extend(response) |
|
|
pbar.update(1) |
|
|
|
|
|
pbar.close() |
|
|
return res |
|
|
|
|
|
def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]: |
|
|
|
|
|
res = [] |
|
|
pbar = tqdm(total=len(requests), disable=(self.rank != 0), desc="Model Responding") |
|
|
|
|
|
for contexts, doc_to_target, doc_to_visual, doc_id, task, split in [reg.args for reg in requests]: |
|
|
|
|
|
if type(doc_to_target) == str: |
|
|
continuation = doc_to_target |
|
|
else: |
|
|
continuation = doc_to_target(self.task_dict[task][split][doc_id]) |
|
|
visuals = [doc_to_visual(self.task_dict[task][split][doc_id])] |
|
|
visuals = self.flatten(visuals) |
|
|
formatted_contexts = [f"{contexts}\n"] |
|
|
formatted_continuation = [f"{contexts}\n{continuation}"] |
|
|
model_inputs = self.processor(text=formatted_continuation, images=visuals, device=self.device) |
|
|
for k, v in model_inputs.items(): |
|
|
model_inputs[k] = v.to(self.device, non_blocking=True) if isinstance(v, torch.Tensor) else [vv.to(self.device, non_blocking=True) for vv in v] |
|
|
|
|
|
for index in range(len(model_inputs["image_patches"])): |
|
|
model_inputs["image_patches"][index] = model_inputs["image_patches"][index].to(dtype=next(self.model.parameters()).dtype) |
|
|
|
|
|
labels = model_inputs["input_ids"].clone() |
|
|
contxt_id = self.processor(text=formatted_contexts, return_tensors="pt")["input_ids"] |
|
|
labels[: len(contxt_id)] = -100 |
|
|
with torch.inference_mode(): |
|
|
outputs = self.model(**model_inputs, labels=labels) |
|
|
loss = outputs["loss"] |
|
|
|
|
|
logits = outputs["logits"] |
|
|
greedy_tokens = logits.argmax(dim=-1) |
|
|
cont_toks = model_inputs["input_ids"][:, contxt_id.shape[1] :] |
|
|
greedy_tokens = greedy_tokens[:, contxt_id.shape[1] : model_inputs["input_ids"].shape[1]] |
|
|
max_equal = (greedy_tokens == cont_toks).all() |
|
|
res.append((float(loss.item()), bool(max_equal))) |
|
|
pbar.update(1) |
|
|
|
|
|
pbar.close() |
|
|
return res |
|
|
|
|
|
def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None) -> List[int]: |
|
|
""" """ |
|
|
add_special_tokens = False if add_special_tokens is None else add_special_tokens |
|
|
encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens) |
|
|
|
|
|
if left_truncate_len: |
|
|
encoding = encoding[-left_truncate_len:] |
|
|
return encoding |
|
|
|
|
|
def tok_decode(self, tokens): |
|
|
return self.tokenizer.decode(tokens) |
|
|
|
|
|
def generate_until_multi_round(self, requests) -> List[str]: |
|
|
raise NotImplementedError("TODO: Implement multi-round generation for Fuyu") |
|
|
|